• 问题陈述

随着代步工具的普及,“买卖车”需求激增。但对于部分预算有限的个体或家庭而言,购置一辆二手车更为明智。二手车的巨大供给需求催生了近年来日益壮大的二手车市场,但二手车的售卖面临着价格漂浮的问题。

因此,我们的目标是根据卖家或买家提供的参数信息计算价格的合理区间,帮助用户判断二手车售卖价格的高低。

    • 方法

(一)动机

在前面我们了解并学习了python部分人工智能库、机器学习等方面的内容,我们决定结合实际的问题场景,在人工智能库的帮助下选取相关的简单算法和大数据计算工具,通过案例的方式,去进一步实践机器学习和数据挖掘的大致流程,在此基础上建立模型并解决实际问题。

(二)实现

我们所实践的案例是二手车价格评估,选用的人工智能库为Scikits-Learn。我们选取了二手车平台上不同参数下的售卖价格数据集,目的是为了根据现有数据,将之经过数据预处理、数据清洗,选择必含数据项,筛除掉无效的或者缺失的数据;通过数据脱敏,保护用户的重要个人隐私,将之以随机值替代或直接覆盖;通过可视化,直观、形象地表达出数据之间内在的联系;在人工智能库Scikits-Learn的帮助下,经过机器学习和模型拟合创建模型,设计程序,帮助用户在输入相关车辆的参数信息后,输出理想价格区间,并依照此区间对该价格高低进行判断。

    • 数据探索

1.1. 数据整体情况介绍

数据来源于外国某网站关于美国二手车交易记录的数据集,总数据量约为40万条,包括26列变量信息,数据集中的各字段如表1所示。

表1 二手车交易记录数据集字段介绍

Field

Description

Field

Description

id

用户名

transmission

自动挡/手动挡

url

网址

VIN

车辆识别号码

region

地区

drive

驱动

region_url

地区网址

size

车辆大小

price

售价

type

车辆类型

year

出厂年份

paint_color

漆色

manufacturer

制造商

image_url

虚拟网址

model

型号

description

二手车描述

condition

车辆状况

county

cylinders

汽缸数目

state

fuel

燃料种类

lat

纬度

odometer

行驶里程数

long

经度

title_status

车辆改造经历

posting_date

挂售时间

1.2. 数据概况

首先导入数据分析所用工具包,读取数据集,查看数据量大小。

Python【二手车价格预测案例】数据挖掘

输出结果:

Python【二手车价格预测案例】数据挖掘

查看数据集前五行:

Python【二手车价格预测案例】数据挖掘

进一步查看数据概况:

Python【二手车价格预测案例】数据挖掘

得到数据概况如表2所示。

表2 二手车交易记录数据集数据概况

columns_number

Feature

Unique_values

Percentage of

missing values

Percentage of values in the biggest category

type

21

county

0

100

100

float64

16

size

4

72.15472155

72.15472155

object

9

cylinders

8

40.15940159

40.15940159

object

8

condition

6

38.28938289

38.28938289

object

14

VIN

34773

36.03736037

36.03736037

object

15

drive

3

30.47430474

30.47430474

object

18

paint_color

12

29.77629776

29.77629776

object

17

type

13

19.61119611

22.7402274

object

6

manufacturer

41

4.4200442

14.91914919

object

12

title_status

6

2.27902279

95.03495035

object

11

odometer

38309

1.52101521

1.52101521

float64

7

model

12613

1.28501285

1.4600146

object

10

fuel

5

0.60300603

82.91382914

object

23

lat

12791

0.53900539

2.03202032

float64

24

long

12814

0.53900539

2.03202032

float64

13

transmission

3

0.51400514

77.75577756

object

5

year

104

0.42800428

8.656086561

float64

20

description

86284

0.03900039

0.08300083

object

19

image_url

64480

0.03800038

1.53501535

object

25

posting_date

94276

0.03800038

0.03800038

object

1

url

99999

0

0.00100001

object

4

price

6610

0

8.328083281

int64

22

state

18

0

50.61450615

object

3

region_url

84

0

2.98302983

object

2

region

84

0

2.98302983

object

根据整体的统计信息得知,county为无效字段(信息量为空);size、cylinders、condition、VIN、drive、paint_color、type字段缺失量较大,在后续分析过程中要考虑是否将其纳入影响范围;大部分数据类型为object,应通过赋值将其转化成方便建立模型的int64或float64类型。

1.3. 探索性数据分析

1.3.1 缺失值可视化

在前面的数据信息统计表中发现有几个字段存在缺失值,接下来分析缺失值情况。

Python【二手车价格预测案例】数据挖掘

图1 二手车交易记录数据集缺失值矩阵图

Python【二手车价格预测案例】数据挖掘

将缺失值可视化后可以发现,size、condition、cylinders、drive等字段缺失值比较多,后续需要对这些字段缺失值进行处理。

1.3.2 查看变量分布

首先,查看二手车售卖价格的大致分布。

图2 二手车交易价格分布图

Python【二手车价格预测案例】数据挖掘

利用scipy模块下的johnsonsu、norm、lognorm将价格的总体分布画出来后,发现Johnson SU拟合效果较好,价格数据分布存在右偏,说明存在部分过大的极端值。需要对数据中的过大的价格值进行处理。

利用箱型图查看具体的分布划分,从箱型图中可以看出,价格大于60000则为离群值。

图3 二手车交易价格箱型图

Python【二手车价格预测案例】数据挖掘

将价格大于60000的数据剔除后再重新画图,并对价格进行log取对数处理。由图可知,取对数后价格的分布相对集中,说明后续在特征工程中可对价格的数据进行log处理。

Python【二手车价格预测案例】数据挖掘

图4 二手车交易价格分布对比图

Python【二手车价格预测案例】数据挖掘

(左图为去掉离群值后,右图为左图取对数后)

2.数据预处理

  1. 划分测试集和训练集

将原始数据按照3 : 1 的比例,分成训练集和测试集,分别用来训练和测试模型。

Python【二手车价格预测案例】数据挖掘
  1. 处理缺失值

由于数据集中部分行存在缺失值,会对后续预估分析造成影响,还有部分列字段对模型作用不(例如description字段,因为具有主观性且篇幅较大,难以将其作为车辆价格预估的参考,lat、long对本次分析无意义,county、size缺失量过大),因此将部分字段直接删除。

Python【二手车价格预测案例】数据挖掘

此外,有些缺失值可能会对预估模型造成影响,故设置一部分列为必填项,将必填项为空的行删除。

Python【二手车价格预测案例】数据挖掘
  1. 数据清洗

根据上面的分析,数据集中存在一些“脏数据”(脏数据是指不符合现实逻辑,且会对模型预测效果产生干扰的数据,脏数据的存在使得数据集的质量下降),因此要对数据集进行数据清洗的工作。

本数据集的price字段表示的是二手车的交易价格,应该是一个大于零的数,如果出现了price小于零或其他异常值的数据记录,则断定此数据是脏数据。

完成后部分数据如图所示。

Python【二手车价格预测案例】数据挖掘

3. 查看特征相关性

  1. 相关性计算

由图可以看出,特征字段之间相关性较低,这是由于大部分字段为object类型,故为了后续分析建立模型,为object类型特征量进行赋值处理。

  1. 热力图展示

对部分object类型数据进行赋值转换类型处理后,为了更直观地展示数据之间的相关性,绘制相关性热力图。

从相关性热度图表中,我们可以看到不同定距数据之间的相关性大小。从中可以挑选出与价格相关性较大的特征字段,剔除相关性为0的特征字段。此外后续的回归预测中还需要解决共线性特征。

Python【二手车价格预测案例】数据挖掘

图5 部分字段相关性热力图

Python【二手车价格预测案例】数据挖掘

由图可以看出,price与year、cylinders、status的相关性较大。

  1. 查看定类数据相关性

3.3.1. 分析年份与价格的关系

Python【二手车价格预测案例】数据挖掘

图6 不同汽车注册年份的价格分布箱型图

Python【二手车价格预测案例】数据挖掘

分析不同汽车注册年份的价格分布箱型图,上世纪80年代前由于数据分布较零散且数据量较小,不具有太大参考价值;而注册年份越往后,价格的跨度越来越大,推测二手车的车型越来越多,且价格有上升的趋势。

3.3.2. 分析不同定类变量与价格之间的关系

Python【二手车价格预测案例】数据挖掘

图7 不同定类变量与价格之间的关系图

Python【二手车价格预测案例】数据挖掘

查看不同类别字段下的价格分布,可以发现不同cylinder类型的车型,其价格跨度会有所不同;车辆状况的好坏程度对价格分布也有较大影响,越好的售价越高;没有改造过的车也比改造过的售价高一些。

  1. 回归分析

从上面热力图中,得出价格price和另外几个变量之间相关性很大。因此,接下来使用IMplot进一步查看两个因素之间的关系。Implot对所选数据集进行了一元线性回归,拟合出了一条最佳的直线。

Python【二手车价格预测案例】数据挖掘

图7 一元线性回归拟合图

Python【二手车价格预测案例】数据挖掘

4. 模型建立

  1. Lasso回归

首先,导入机器学习所用的人工智能库sklearn。

Python【二手车价格预测案例】数据挖掘
Python【二手车价格预测案例】数据挖掘

图8 Lasso回归折线图

Python【二手车价格预测案例】数据挖掘
  1. 特征重要性分析

Python【二手车价格预测案例】数据挖掘

图9 特征重要性交叉验证图

Python【二手车价格预测案例】数据挖掘

运行结果为:

Python【二手车价格预测案例】数据挖掘

5. 改进和创新

  1. 观测可视化

积极使用matplotlib库、missingno库、seaborn库等可视化第三方库辅助数据进行特性分析及指标衡量,利用直观的可视图像对拟合效果及模型状况进行评估与检验,相比直接的数据。

  1. 参数具象化

由于二手车数据的回归模型建立需要较多数值指标,通过参数运算获得非数指标的归整数据化,便于lasso回归模型建立。

  1. 数据标准化。

通过缩放手段避免部分特性的方差过大带来的高支配影响或部分特征值过小或过大带来的数据点集中在坐标轴某特定偏远区域现象。利用数据标准化可为分析数据带来带来方便。

  1. 求解严谨化。

通过增加惩罚系数alpha,强制影响系数绝对值之和小于某个固定值,避免单变量的支配影响。

  1. 检验合理化。

利用交叉检验、残差图、MSE和R²等方式对系数重要度及拟合效果进行检验评估,保障预测效果。

6. 结果与分析

  1. residual plot 残差图

画图表示实际值和预测值之间的差异。

Python【二手车价格预测案例】数据挖掘

图10 residual plot 残差图

Python【二手车价格预测案例】数据挖掘
  1. MSE和R2

Python【二手车价格预测案例】数据挖掘

运行结果为:

Python【二手车价格预测案例】数据挖掘

7. 查看具体实际值和预测值

查看模型预测值与真实值的对比,并计算准确率。

Python【二手车价格预测案例】数据挖掘

结果如下:

Python【二手车价格预测案例】数据挖掘

面向客户(买家/卖家)的窗口:

Python【二手车价格预测案例】数据挖掘

8. 讨论与结论

  1. 优点:

回归检验度高,通过多重检验保障回归准确性。

  1. 缺点:

拟合过程对于数值数据依赖性大,对于非数值数据的处理能力较差。

  1. 改进方向:

通过数据类别分析,进行非数值数据与数值数据的共同拟合。

源码及项目文档:https://github.com/YourHealer/Python-Used-car-price-PredictSys.git