Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation

  • video-to-video
  • Abstract
  • Introduction
  • Method
    • Diffusion Models
      • Latent Diffusion Model
    • One-shot Video Generation
    • Our Tune-A-Video
      • attention block
      • One-Shot Turning
  • Experiment

video-to-video

修改文本内容,生成新的视频。
【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation

Abstract

由于T2I的成功,近日T2V的方法在大量的T2I的数据集中加入fine-turning.我们试图给出一个One-Shot Video Generation。
1、产生图像与动词对齐。
2、扩展文本到图像的模型,同时生产多张图片。
作者提出Turn a video的方法,高效的fine-turn翻译成2D的扩散模型,通过文本生成视频。改变元素、背景或者风格的转换。

Introduction

【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
让模型具有One-Shot的能力。
原模型:缺乏连贯性,动作、背景不连贯。不符合对视频生成的要求。
新模型:增加了Self-Attention(由空间相似性驱动,而不是像素的位置),增加了连贯性,主体一致性

预训练文本-视频,由3×3扩展到1×3×3
具有结构相似性。

寄存量呈平方式增加(过大),
提出Sparse-Causal Attention(SC-Attn)
对于因果Attentiion的变形,稀疏版本。
该方法可以回归生成任意长度的视频帧。
【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
Sparse-Causal是Causal的稀疏版

上:膨胀成文本到视频
下:新的文本,生成对应视频(动作不变)
【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
pipeline
【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generationdiffusion U-NET模型,下方attention模型,修改为Sparse-Causal Attention。

concat

投影到矩阵。

Method

Diffusion Models

Latent Diffusion Model

One-shot Video Generation

生成相同语义信息。
无法生成连续的动作

动作词语需要一致

Our Tune-A-Video

“膨胀”
2D的convolution

3×3
1×3×3(frame层转移到batch,依然是2D)

attention block

①a spatial self-attention
②a cross attention

One-Shot Turning

【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation

KEY和VALUE由前一帧推断出

【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation
应用场景:元素修改,背景替换,风格迁移

Experiment

消融实验
【论文精读】Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation

发表回复