目录
- 0 写在前面
- 1 什么是线性判别分析?
- 2 协方差与协方差矩阵
- 3 LDA原理推导
-
- 3.1 约束条件
- 3.2 数值优化
- 4 Python实现
-
- 4.1 计算类内散度矩阵
- 4.2 计算模型参数
- 4.3 可视化
0 写在前面
机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。
🚀详情:机器学习强基计划(附几十种经典模型源码合集)
1 什么是线性判别分析?
线性判别分析(Linear Discriminant Analysis, LDA)的核心思想是:将给定训练集投影到特征