本人最近接触深度学习,想在服务器上配置深度学习的环境,看了很多资料后总结出来了对于新手比较友好的配置流程,创建了一个关于深度学习环境配置的专栏,包括从anaconda到cuda到pytorch的一系列操作,专栏中的另外两篇文章如下,如果有不对的地方欢迎大家批评指正!

Anaconda保姆级安装配置教程(新手必看)

如果你还不是很清楚CUDA,CUDATookit,cuDNN,Pytorch分别在深度学习环境中的定位与关系,推荐看一下我这篇文章
用人话讲解深度学习中CUDA,cudatookit,cudnn和pytorch的关系

另外,如果你还不是特别理解虚拟环境的作用,建议看一下这位大佬的视频安装不算完事,只有理解了虚拟环境才算真正掌握 Python 环境_哔哩哔哩_bilibili

文章目录

    • 一、conda创建并激活虚拟环境
        • 1.进入anaconda的base环境
        • 2.conda创建、进入和退出虚拟环境
    • 二、查看CUDA版本
    • 三、安装CUDATookit
    • 四、安装cuDNN
    • 五、安装Pytorch
    • 检查环境是否配置成功

首先,我们要明确,我们是要在虚拟环境中安装cuda和cuDNN!!!只需要在虚拟环境中安装就可以了。

下面的操作默认你安装好了python

一、conda创建并激活虚拟环境

前提:确定你安装好了anaconda并配置好了环境变量,如果没有,网上有很多详细的配置教程,请自行学习

在cmd命令提示符中输入conda命令查看anaconda

在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境(新手必看!简单可行!)

如果显示和上图相同,那么可以继续向下看

1.进入anaconda的base环境

方法1——在cmd命令提示符中输入如下命令

activate

在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境(新手必看!简单可行!)

方法2——直接在搜索栏里搜索anaconda prompt并打开即可

在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境(新手必看!简单可行!)

方法3——如果你是在linux操作系统下,在你的/anaconda/bin/下打开终端,即可直接进入anaconda的环境

以上三种方法出现(base)就意味着你已经进入了anaconda的基础环境

2.conda创建、进入和退出虚拟环境

这三个操作可以各用一行命令来完成

#创建一个虚拟环境
conda create -n [your_env_name(你的虚拟环境的名字)] python==[X.X](2.5、3.8等)
#eg:conda create -n nnunet_env python=3.8
#进入虚拟环境
conda activate [你的虚拟环境名]
#退出虚拟环境
conda deactivate

创建好的虚拟环境文件夹可以在anaconda文件夹中的envs文件夹里找到

后续的环境配置操作均要在激活虚拟环境的情况下完成!!!!!

二、查看CUDA版本

系统的CUDA版本,决定了系统最高可以支持什么版本的cudatoolkit,它是向下兼容

我们可以通过nvidia-smi命令查看cuda版本号
在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境(新手必看!简单可行!)

比如我的CUDA Version=11.7,那么它就可以支持 ≤ 11.7版本的CUDATookit

现在你已经知道了自己系统的cuda版本,接下来我会以自己利用清华镜像源来配置cuda+cudnn+pytorch深度学习环境的一个例子来简单直白的说明怎样去做

再提醒一遍,下面的操作也要在你激活自己的虚拟环境的情况下进行!

三、安装CUDATookit

我们需要用到下面这条命令

conda install cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/

我选择下载11.3版本,这个需要看你们自己的需求来改变,只要你系统的CUDA支持就可以

四、安装cuDNN

如果你成功安装了你想要的那个版本的cudatookit,注意,现在你安装cudnn的版本必须依赖于cudatookit的版本

cuda与cudnn的对应关系可以在cuDNN历史版本下载页面看到:

  • cuda下载页面
  • cudnn下载页面

这里我简单列出来了较新的一些版本之间的对应关系

在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境(新手必看!简单可行!)

根据上图可知,我安装了CUDA 11.3版本,那么可选的cuDNN版本有很多,这里我直接无脑安装了最新版本,也就是cuDNN的8.4.0版本,同样是用清华镜像源来安装

conda install cudnn=8.4.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/

五、安装Pytorch

根据之前我们讲过的,pytorch的版本也是和CUDA版本有对应关系的,比如torch1.6.0只适配cuda10.2、10.1、9.2,不适配cuda11.0。

我们接下来的操作需要进入到Pytorch的官网Previous PyTorch Versions | PyTorch,在里面查看你想要的Pytorch版本它适配的CUDA版本并获取安装命令

比如我现在想要安装Pytorch的1.11.0版本,同时我之前已经安装了CUDA的11.3版本

在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境(新手必看!简单可行!)
如上图,这一条命令可以满足我的pytorch和cuda之间的对应关系,因此,我们复制它并运行,即可安装Pytorch 1.11.0

conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

注意:

  1. 也可以用pip install的命令来下载pytorch,但是因为三四两步都用的是conda,所以这里为了方便也用了conda
  2. conda install pytorch安装的是torch CPU版本,conda install pytorch torchvision -c pytorch安装的是GPU版本

检查环境是否配置成功

如果如下操作可以正常进行并打印出你安装的相应版本,那么你已经配置成功

#进入虚拟环境
conda activate [你的虚拟环境名]
#输入python来进入python的环境
python
#加载torch
import torch
print(torch.backends.cudnn.version())
#输出8200,代表着成功安装了cudnn v8.4.0
print(torch.__version__)
#输出1.11.0,代表成功安装了pytorch 1.11.0
print(torch.version.cuda)
#输出11.3,代表成功安装了cuda 11.3
torch.cuda.is_available()
#True

码字不易,大家点赞支持一下,感谢!!!

声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。