***************************************************

码字不易,收藏之余,别忘了给我点个赞吧!

***************************************************

---------Start

首先参考上一篇的训练过程,因为测试需要用到训练获得的权重。

1、检查相关文件

1.1 检查test_vol.txt的内容是否是测试用的npz文件名称

【swinUnet官方代码测试自己的数据集(已训练完毕)】
测试集的npz文件
【swinUnet官方代码测试自己的数据集(已训练完毕)】

1.2 检查模型权重文件

【swinUnet官方代码测试自己的数据集(已训练完毕)】

2、修改部分代码

2.1 修改dataset_synapse.py

            slice_name = self.sample_list[idx].strip('\n')
            data_path = os.path.join(self.data_dir, slice_name+'.npz')
            data = np.load(data_path)
            image, label = data['image'], data['label']
            #改,numpy转tensor
            image = torch.from_numpy(image.astype(np.float32))
            image = image.permute(2,0,1)
            label = torch.from_numpy(label.astype(np.float32))

2.2 修改test.py代码

修改相关参数和文件路径
is_savenii:是否保存预测结果图片
num_classes:预测的目标类别数+1
【swinUnet官方代码测试自己的数据集(已训练完毕)】
cfg:swinUnet网络结构配置文件
test_save_dir:保存预测结果文件夹
【swinUnet官方代码测试自己的数据集(已训练完毕)】
num_classes:预测的目标类别数+1
【swinUnet官方代码测试自己的数据集(已训练完毕)】
自定义权重路径
【swinUnet官方代码测试自己的数据集(已训练完毕)】

2.3 修改util.py代码(分两种情况)

第一种情况:保存预测原图,保存的结果是一张灰度图,每个像素的值代表该像素属于哪个类别。例如(0:背景,1:目标1,2:目标2…),这是一张全黑图。


def test_single_volume(image, label, net, classes, patch_size=[256, 256], test_save_path=None, case=None, z_spacing=1):
    image, label = image.squeeze(0).cpu().detach().numpy(), label.squeeze(0).cpu().detach().numpy()
    _, x, y = image.shape
    # 缩放图像符合网络输入大小224x224
    if x != patch_size[0] or y != patch_size[1]:
        image = zoom(image, (1, patch_size[0] / x, patch_size[1] / y), order=3)
    input = torch.from_numpy(image).unsqueeze(0).float().cuda()
    net.eval()
    with torch.no_grad():
        out = torch.argmax(torch.softmax(net(input), dim=1), dim=1).squeeze(0)
        out = out.cpu().detach().numpy()
        # 缩放预测结果图像同原始图像大小
        if x != patch_size[0] or y != patch_size[1]:
            prediction = zoom(out, (x / patch_size[0], y / patch_size[1]), order=0)
        else:
            prediction = out
    metric_list = []
    for i in range(1, classes):
        metric_list.append(calculate_metric_percase(prediction == i, label == i))
    if test_save_path is not None:
        #保存预测结果
        prediction = Image.fromarray(np.uint8(prediction)).convert('L')
        prediction.save(test_save_path + '/' + case + '.png')
    return metric_list

第二种情况:保存可见图像,将不同类别映射成不同的颜色。只需要将上面代码的if test_save_path is not None:里面的内容替换成下面的代码即可。

        #将不同类别区域呈彩色展示
        #2分类 背景为黑色,类别1为绿色
    if test_save_path is not None:
        a1 = copy.deepcopy(prediction)
        a2 = copy.deepcopy(prediction)
        a3 = copy.deepcopy(prediction)
        #r通道
        a1[a1 == 1] = 0
		#g通道
        a2[a2 == 1] = 255
		#b通道
        a3[a3 == 1] = 0
        a1 = Image.fromarray(np.uint8(a1)).convert('L')
        a2 = Image.fromarray(np.uint8(a2)).convert('L')
        a3 = Image.fromarray(np.uint8(a3)).convert('L')
        prediction = Image.merge('RGB', [a1, a2, a3])
        prediction.save(test_save_path+'/'+case+'.png')

至此,设置完毕,右键run运行,若控制台出现下面的结果,则表示运行正确,我这里的权重只训练了一个epoch,所以预测的都是0。
【swinUnet官方代码测试自己的数据集(已训练完毕)】

3、查看预测结果

查看日志文件
【swinUnet官方代码测试自己的数据集(已训练完毕)】
查看预测结果图
【swinUnet官方代码测试自己的数据集(已训练完毕)】

总结: swinUnet主要由swin_transform模块构成,数据量太少的时候训练效果很差,跟TransUnet不能比。由于仅文字表述某些操作存在局限性,故只能简略描述,有任何疑问可下方留言评论或私信,回复不及还望见谅,感激不尽!

发表回复