一、tokenizer.encode和tokenizer.tokeninze
tokenizer.tokenize :先分词,再转成id,直接输出tensor
tokenizer.encode :直接输出id,需要转换为tensor
sentence = "Hello, my son is cuting."
input_ids_method1 = torch.tensor(tokenizer.encode(sentence,add_special_tokens=True))
# tensor([ 101, 7592, 1010, 2026, 2365, 2003, 3013, 2075, 1012, 102])
input_token2 = tokenizer.tokenize(sentence)
# ['hello', ',', 'my', 'son', 'is', 'cut', '##ing', '.']
input_ids_method2 = tokenizer.convert_tokens_to_ids(input_token2)
# tensor([7592, 1010, 2026, 2365, 2003, 3013, 2075, 1012])
# 并没有开头和结尾的标记:[cls]、[sep]
二、tokenizer.encode和tokenizer.encode_plus的区别
普通编码 tokenizer.encode()、增强编码 tokenizer.encode_plus()
tokenizer.encode_plus() 的编码方式比tokenizer.encode()在文本分类上的编码方式要好,在中文分类数据集上会有1个点左右的差别
1、tokenizer.encode仅返回input_ids
2、 tokenizer.encode_plus返回所有的编码信息,具体如下:
- ’input_ids:是单词在词典中的编码
- ‘token_type_ids’:区分两个句子的编码(上句全为0,下句全为1)
- ‘attention_mask’:指定对哪些词进行self-Attention操作
# 编码错配! encode_plus 的编码方式比encode在文本分类上的编码方式要好
import torch
from transformers import BertTokenizer
model_name =" bert-base-uncase"
tokenizer = BertTokenizener.from_pretrained(model_name)
sentence= "hello,myson"
-----------------------
print(tokenizer.encode(sentence))
[101, 7592, 1010, 2026, 2365, 2003, 5870, 1012, 102]
当tokenizer.encode函数中的add_special_tokens设置为False时,同样不会出现开头和结尾标记:[cls], [sep]
-----------------------
print(tokenizer.encode_plus(sentence))
{'input_ids': [101, 7592, 1010, 2026, 2365, 2003, 5870, 1012, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1]}