递归的概念
简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时 可以让代码变得简洁。
递归调用机制
以打印问题和阶乘问题为例,使用图解方式说明了递归的调用机制
代码如下:
package DataStructures.com.atguigu.recursion;
public class RecursionTest {
public static void main(String[] args) {
test(4);
int res = factorial(3);
System.out.println("res=" + res);
}
public static void test(int n){
//打印问题
if(n > 2){
test(n - 1);
}
System.out.println(n);
}
public static int factorial(int n){
//阶乘问题
if(n == 1){
return 1;
}else{
return factorial(n - 1) * n;
}
}
}
运行结果:
递归需要遵守的重要规则
- 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
- 方法的局部变量是独立的,不会相互影响, 比如 n 变量
- 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
- 递归必须向退出递归的条件逼近,否则就是无限递归,出现 StackOverflowError,死龟了
- 当一个方法执行完毕,或者遇到 return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或 者返回时,该方法也就执行完毕
递归-->迷宫问题
package DataStructures.com.atguigu.recursion;
public class MiGong {
public static void main(String[] args) {
// 先创建一个二维数组,模拟迷宫
// 地图
int[][] map = new int[8][7];
//使用1表示墙
//上下全部置为1
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
// 左右全部置为1
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
//设置挡板, 1 表示
map[3][1] = 1;
map[3][2] = 1;
// map[1][2] = 1;
// map[2][2] = 1;
// 输出地图
System.out.println("地图的情况");
for(int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
//使用递归回溯给小球找路
//setWay(map, 1, 1);
setWay2(map, 1, 1);
//输出新的地图, 小球走过,并标识过的递归
System.out.println("小球走过,并标识过的 地图的情况");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
//使用递归回溯来给小球找路
//说明
//1. map 表示地图
//2. i,j 表示从地图的哪个位置开始出发 (1,1)
//3. 如果小球能到 map[6][5] 位置,则说明通路找到.
//4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙 ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
//5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
/**
*
* @param map 表示地图
* @param i 从哪个位置开始找
* @param j
* @return 如果找到通路,就返回true, 否则返回false
*/
public static boolean setWay(int[][] map,int i, int j){
if(map[6][5] == 2){
//通路已经找到ok
return true;
}else {
if(map[i][j] == 0){ //如果当前这个点还没有走过
//按照策略 下->右->上->左 走
map[i][j] = 2;//假定该点是可以走通
if(setWay(map,i+1, j)){
//向下走
return true;
}else if(setWay(map,i,j + 1)){
//向右走
return true;
}else if (setWay(map, i-1, j)) { //向上
return true;
} else if (setWay(map, i, j-1)){ // 向左走
return true;
}else{
//说明该点是走不通,是死路
map[i][j] = 3;
return false;
}
}
else{// 如果map[i][j] != 0 , 可能是 1, 2, 3
return false;
}
}
}
//修改找路的策略,改成 上->右->下->左
public static boolean setWay2(int[][] map, int i, int j) {
if(map[6][5] == 2) { // 通路已经找到ok
return true;
} else {
if(map[i][j] == 0) { //如果当前这个点还没有走过
//按照策略 上->右->下->左
map[i][j] = 2; // 假定该点是可以走通.
if(setWay2(map, i-1, j)) {//向上走
return true;
} else if (setWay2(map, i, j+1)) { //向右走
return true;
} else if (setWay2(map, i+1, j)) { //向下
return true;
} else if (setWay2(map, i, j-1)){ // 向左走
return true;
} else {
//说明该点是走不通,是死路
map[i][j] = 3;
return false;
}
} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
return false;
}
}
}
}
运行结果:
对迷宫问题的讨论
- 小球得到的路径,和程序员设置的找路策略有关即:找路的上下左右的顺序相关
- 再得到小球路径时,可以先使用(下右上左),再改成(上右下左),看看路径是不是有变化
- 测试回溯现象
这篇博客是我在B站看韩顺平老师数据结构和算法的课时的笔记,记录一下,防止忘记,也希望能帮助各位朋友。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。
评论(0)