• 英文标题:Transferability in Deep Learning: A Survey
  • 中文标题:深度学习中的可迁移性综述
  • 论文下载链接:arxiv@2201.05867

序言

这篇综述整体来说还是比较详实的,迁移学习本身在人工智能中的应用是非常广泛的,因此很容易与其他方法相结合,原文第三大节关于适应性的部分是非常关键的,也是本笔注的重点内容,理论性极强,其他两部分相对要水一些,很多老生常谈的东西就不作记录了。个人感觉是比较适合有一定机器学习基础,然后希望巩固迁移学习相关知识的人进行阅读理解。

摘要

The success of deep learning algorithms generally depends on large-scale data, while humans appear to have inherent ability of knowledge transfer, by recognizing and applying relevant knowledge from previous learning experiences when encountering and solving unseen tasks. Such an ability to acquire and reuse knowledge is known as transferability in deep learning. It has formed the long-term quest towards making deep learning as data-efficient as human learning, and has been motivating fruitful design of more powerful deep learning algorithms. We present this survey to connect different isolated areas in deep learning with their relation to transferability, and to provide a unified and complete view to investigating transferability through the whole lifecycle of deep learning. The survey elaborates the fundamental goals and challenges in parallel with the core principles and methods, covering recent cornerstones in deep architectures, pre-training, task adaptation and domain adaptation. This highlights unanswered questions on the appropriate objectives for learning transferable knowledge and for adapting the knowledge to new tasks and domains, avoiding catastrophic forgetting and negative transfer. Finally, we implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.

文章目录

  • 序言
    • 摘要
    • 1 导论 Introduction
      • 1.1 术语 Terminology
      • 1.2 概述 Overview
    • 2 预训练 Pre-Training
      • 2.1 预训练模型 Pre-Training Model
      • 2.2 有监督的预训练模型 Supervised Pre-training Model
        • 2.2.1 元学习 Meta Learning
        • 2.2.2 因果学习 Casual Learning
      • 2.3 无监督的预训练模型
        • 2.3.1 生成学习 Generative Learning
        • 2.3.2 对比学习 Contrastive Learning
      • 2.4 注释 Remarks
    • 3 适应性 Adaptation
      • 3.1 任务适应性 Task Adaptation
        • 3.1.1 灾难性遗忘 Catastrophic Forgetting
        • 3.1.2 负迁移 Negative Transfer
        • 3.1.3 参数功效 Parameter Efficiency
        • 3.1.4 数据功效 Data Efficiency
        • 3.1.5 注释 Remarks
      • 3.2 领域适应性 Domain Adaptation
        • 3.2.1 统计匹配 Statistics Matching
        • 3.2.2 领域对立学习 Domain Adversarial Learning
        • 3.2.3 假设对立学习 Hypothesis Adversarial Learning
        • 3.2.4 领域翻译 Domain Translation
        • 3.2.5 半监督学习 Semi-Supervised Learning
        • 3.2.6 注释 Remarks
    • 4 评估 Evaluation
      • 4.1 数据集 Datasets
      • 4.2 开源包 Library
      • 4.3 基准 Benchmark
        • 4.3.1 预训练 Pre-Training
        • 4.3.2 任务适应性 Task Adaptation
        • 4.3.3 领域适应性 Domain Adaptation
    • 5 结论 Conclusion
    • 参考文献

1 导论 Introduction

1.1 术语 Terminology

数学标记 具体含义

X
\mathcal X
X
输入空间

Y
\mathcal Y
Y
输出空间

f
f
f

f
:
X

Y
f:\mathcal X\rightarrow \mathcal Y
f:XY
是需要学习的标注函数

l
l
l

l
:
Y
×
Y

R
+
l:\mathcal{Y}\times \mathcal{Y}\rightarrow \R_+
l:Y×YR+
是给定的损失函数

D
\mathcal D
D

X
\mathcal X
X
上的某个未知分布

D
^
\mathcal{\hat D}
D
独立同分布采样自
D
\mathcal D
D
的样本
{
x
1
,
.
.
.
,
x
n
}
\{{\bf x}_1,...,{\bf x}_n\}
{x1,...,xn}

P
(

)
P(\cdot)
P()
定义在
X
\mathcal X
X
上的事件概率

E
(

)
\mathbb E(\cdot)
E()
随机变量数学期望

U
\mathcal U
U
上游数据

S
\mathcal S
S
下游数据的源领域

T
\mathcal T
T
下游数据的目标领域

t

t_{*}
t


*
领域的任务,

*
可以取
T
,
S
,
U
\mathcal{T,S,U}
T,S,U

H
\mathcal H
H
假设空间(可以理解为模型集合)

h
h
h
假设空间中的一个假设(下文中如不作特殊说明,假设和模型含义相同)

ψ
\psi
ψ
特征生成器

θ
\theta
θ
假设参数

x
\bf x
x
模型输入

y
\bf y
y
模型输出

z
\bf z
z
隐层特征激活生成结果

D
D
D
用于区分不同分布的辨识器

定义
1
1
1
(可迁移性)

给定源领域
S
\mathcal{S}
S
的学习任务
t
S
t_{\mathcal{S}}
tS
以及目标领域
T
\mathcal T
T
的学习任务
t
T
t_{\mathcal{T}}
tT
可迁移性(transferability)指从
t
S
t_{\mathcal S}
tS
中获取可迁移的知识,将获取到的知识在
t
T
t_{\mathcal T}
tT
中进行重用并能够使得
t
T
t_{\mathcal T}
tT
泛化误差降低,其中
S

T
\mathcal S\neq \mathcal T
S=T

t
S

t
T
t_{\mathcal S}\neq t_{\mathcal T}
tS=tT

1.2 概述 Overview

本文分三部分展开:

  1. 预训练(Pre-training):关于一些重要的迁移模型架构,有监督的预训练与无监督的预训练方法综述。这部分相对浅显,只对重点内容进行摘要记录。
  2. 适应性(Adaptation):重点在任务适应性(task adaptation)与领域适应性(domain adaptation),这部分理论性极强,尤其是领域适应性部分汇总了大量的定理与统计结果,感觉就不是同一个人写的。
  3. 评估(Evaluation):本文提出一个开源包用于迁移学习的通用算法以及评估,项目地址在GitHub@TLlib

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

2 预训练 Pre-Training

2.1 预训练模型 Pre-Training Model

2.2 有监督的预训练模型 Supervised Pre-training Model

2.2.1 元学习 Meta Learning

2.2.2 因果学习 Casual Learning

因果学习(casual learning)旨在对分布外的(out-of-distribution,OOD)领域进行外推式的(extrapolated)迁移学习。其核心是使用某种因果机制(causal mechanisms)来捕获复杂真实世界的分布,当分布发生变化时,只有少数因果机制发生变化,而其余保持不变,这样即可得到更好的OOD推广。具体如Figure 7所示:

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

因果机制由一张有向无环图中的顶点作为变量表示,每一条边表示了某种因果关系,这样就可以在给定父节点分布的条件下,得到每个变量的联合分布的非纠缠因子分解(disentangled factorization)形式,此时分布上的一些小变化只会对非纠缠因子分解的局部或者以一种稀疏的方式进行影响。因果学习的关键问题是获取由独立因果机制控制的变量,下面是两种常用的方法:

2.3 无监督的预训练模型

无监督预训练主要是指自监督学习(self-supervised learning),重点在于如何构建自监督学习任务用于预训练,方法主要可以分为生成学习(generative learning)与对比学习(contrastive learning)两大类。

2.3.1 生成学习 Generative Learning

2.3.2 对比学习 Contrastive Learning

2.4 注释 Remarks

总结一下本小节所有方法的性能:

方法 模态延展性 任务延展性 数据功效 标注成本
标准预训练
元学习
因果学习
生成学习
对比学习

字段说明:

3 适应性 Adaptation

3.1 任务适应性 Task Adaptation

所谓任务适应性(task adaptation),指给定一个预训练模型
h
θ
h_{\theta^0}
hθ0
以及目标领域
T
^
=
{
x
i
,
y
i
}
i
=
1
m
\mathcal{\hat T}=\{{\bf x}_i,{\bf y}_i\}_{i=1}^m
T={xi,yi}i=1m
(带标签的
m
m
m
个样本对),我们的目的是据此在假设空间
H
\mathcal{H}
H
中找到一个具体的假设
h
θ
:
X

Y
h_{\theta}:\mathcal X\rightarrow \mathcal Y
hθ:XY
,使得风险
ϵ
T
(
h
θ
)
\epsilon_{\mathcal T}(h_{\theta})
ϵT(hθ)
最小化。

一般而言,有两种方法将预训练模型适应到下游任务中:

  1. 特征转换(feature transfer):此时预训练模型的网络层权重将被固定,只是再训练一个全连接网络用于输入特征转换。
  2. 微调(finetune):此时预训练模型的网络层权重相当于是模型训练的一个初始点,将继续在目标领域的样本对中继续训练优化其网络层权重。

特征转换操作便利、成本更小,但微调得到的模型性能通常会更好。

这里有一个概念叫作基准微调(vanilla finetune),即直接在目标数据上,根据经验风险最小化(empirical risk minimization)对预训练模型进行微调,但是这种方法将会受到灾难性遗忘(catastrophic forgetting)与负迁移(negative transfer)问题的困扰,Section 3.1.1与Section 3.1.2主要探讨的是如何缓解这两个问题。此外因为模型尺寸与训练数据量越来越庞大,Section 3.1.3与Section 3.1.4将探讨参数功效(parameter efficiency)与数据功效(data efficiency)的问题。

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

3.1.1 灾难性遗忘 Catastrophic Forgetting

3.1.2 负迁移 Negative Transfer

定义
2
2
2
(负迁移差距)


h
θ
(
U
,
T
)
h_{\theta}(\mathcal{U,T})
hθ(U,T)
表示从上游数据
U
\mathcal U
U
中预训练的模型适应到目标数据
T
\mathcal T
T
中的一个模型,
h
θ
(

,
T
)
h_{\theta}(\emptyset,\mathcal T)
hθ(,T)
表示直接从
T
\mathcal T
T
上训练得到的模型,则负迁移差距(negative transfer gap)定义为:

NTG
=
ϵ
T
(
h
θ
(
U
,
T
)
)

ϵ
T
(
h
θ
(

,
T
)
)
(12)
\text{NTG}=\epsilon_{\mathcal T}(h_{\theta}(\mathcal{U,T}))-\epsilon_{\mathcal T}(h_{\theta}(\emptyset,\mathcal{T}))\tag{12}
NTG=ϵT(hθ(U,T))ϵT(hθ(,T))(12)

称发生了负迁移,若
NTG
\text{NTG}
NTG
为正。

  • 笔者注

    根据定义,
    NTG
    \text{NTG}
    NTG
    衡量的是迁移得到的模型与直接训练得到的模型之间的性能差距(损失函数值之间的差距)。若
    NTG
    \text{NTG}
    NTG
    为正,即发生了负迁移,这说明迁移得到的模型还不如直接从目标数据上进行训练得到的模型,那么迁移本身就是无意义的。

3.1.3 参数功效 Parameter Efficiency

3.1.4 数据功效 Data Efficiency

3.1.5 注释 Remarks

总结一下本小节所有方法的性能:

方法 适应性能 数据功效 参数功效 模态延展性 任务延展性
特征转换
平凡微调
领域适应性调优
正则化调优
残差调优
参数差异调优
指标学习
提示学习

字段说明:

3.2 领域适应性 Domain Adaptation

所谓领域适应性(Domain Adaptation),指的是在目标领域中训练数据是未标注的,源领域中的训练数据是已标注的。因此试图在源领域中预训练模型,再设法迁移到目标领域中进行微调。尽管源领域与目标领域的数据存在某种关联性,但是在分布上必然存在一定差异,因而往往迁移微调的模型性能欠佳。这种现象称为分布漂移(distribution shift,参考文献
[
133
]
[133]
[133]
),领域适应性正是用于消除训练领域与测试领域之间的分布漂移问题。

传统的领域适应性方法如重加权(re-weighting)、从源领域采样(参考文献
[
165
]
[165]
[165]
)、建模源领域分布特征空间到目标领域分布特征空间的转换(参考文献
[
53
]
[53]
[53]
]),这些方法相对平凡,如参考文献
[
76
,
126
,
111
]
[76,126,111]
[76,126,111]
研究的是核重生希尔伯特空间(kernel-reproducing Hilbert space)分布映射方法,参考文献
[
53
]
[53]
[53]
研究的是将主成分轴(principal axes)与各个领域分布相联系。本综述着重探讨的是深度领域适应性(deep domain adaptation),即采用深度学习模型架构来建模适应性模块,用于匹配不同领域的数据分布

无监督领域适应性(unsupervised domain adaptation,UDA)中,源领域
S
^
=
{
(
x
i
s
,
y
i
s
)
}
i
=
1
n
\mathcal{\hat S}=\{({\bf x}_i^{s},{\bf y}_i^{s})\}_{i=1}^n
S={(xis,yis)}i=1n
中包含
n
n
n
个已标注的样本,目标领域
T
^
=
{
x
i
t
}
i
=
1
m
\mathcal{\hat T}=\{{\bf x}_i^t\}_{i=1}^m
T={xit}i=1m
中包含
m
m
m
个未标注的样本,目标是学习算法来找到一种假设(hypothesis,其实就是映射)
h

H
:
X

Y
h\in\mathcal{H}:\mathcal{X\rightarrow Y}
hH:XY
,使得目标风险最小化:

minimize
ϵ
T
(
h
)
=
E
(
x
t
,
y
t
)

T
[
l
(
h
(
x
t
)
,
y
t
)
]
\text{minimize}\quad\epsilon_{\mathcal{T}}(h)=\mathbb{E}_{({\bf x}^t,{\bf y}^t)\sim\mathcal{T}}[l(h({\bf x}^t),{\bf y}^t)]
minimizeϵT(h)=E(xt,yt)T[l(h(xt),yt)]

其中
l
:
Y
×
Y

R
+
l:\mathcal{Y\times Y}\rightarrow\R_+
l:Y×YR+
是损失函数。目前关于UDA的理论研究核心在于如何通过源风险
ϵ
S
\epsilon_{\mathcal{S}}
ϵS
以及分布距离(distribution distance)来控制目标风险
ϵ
T
(
h
)
\epsilon_{\mathcal{T}}(h)
ϵT(h)
的量级,这里主要介绍两个经典的研究理论
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度(Divergence,参考文献
[
9
,
10
,
120
]
[9,10,120]
[9,10,120]
)与差距矛盾(Disparity Discrepancy,参考文献
[
204
]
[204]
[204]
),以及如何基于这些理论设计不同的算法。

首先使用三角不等式,可以构建目标风险与源风险之间的不等关系:

定理
3
3
3
(Bound with Disparity)
:

假设损失函数
l
l
l
对称的(symmetric)且服从三角不等式,定义任意两个在分布
D
\mathcal{D}
D
上的假设
h
h
h

h

h'
h
之间差距(disparity):

ϵ
D
(
h
,
h

)
=
E
x
,
y

D
[
l
(
h
(
x
)
,
h

(
x
)
)
]
(14)
\epsilon_{\mathcal{D}}(h,h')=\mathbb{E}_{{\bf x},{\bf y}\sim\mathcal{D}}[l(h({\bf x}),h'({\bf x}))]\tag{14}
ϵD(h,h)=Ex,yD[l(h(x),h(x))](14)

则目标风险
ϵ
T
(
h
)
\epsilon_{\mathcal{T}}(h)
ϵT(h)
满足:

ϵ
T
(
h
)

ϵ
S
(
h
)
+
[
ϵ
S
(
h

)
+
ϵ
T
(
h

)
]
+

ϵ
S
(
h
,
h

)

ϵ
T
(
h
,
h

)

(15)
\epsilon_{\mathcal{T}}(h)\le\epsilon_{\mathcal{S}}(h)+[\epsilon_{\mathcal{S}}(h^*)+\epsilon_{\mathcal{T}}(h^*)]+|\epsilon_{\mathcal{S}}(h,h^*)-\epsilon_{\mathcal{T}}(h,h^*)|\tag{15}
ϵT(h)ϵS(h)+[ϵS(h)+ϵT(h)]+ϵS(h,h)ϵT(h,h)(15)

其中
h

=
argmax
h

H
[
ϵ
S
(
h
)
+
ϵ
T
(
h
)
]
h^*=\text{argmax}_{h\in\mathcal{H}}[\epsilon_{\mathcal{S}}(h)+\epsilon_{\mathcal{T}}(h)]
h=argmaxhH[ϵS(h)+ϵT(h)]
理想联合假设(ideal joint hypothesis),
ϵ
ideal
=
ϵ
S
(
h

)
+
ϵ
T
(
h

)
\epsilon_{\text{ideal}}=\epsilon_{\mathcal{S}}(h^*)+\epsilon_{\mathcal{T}}(h^*)
ϵideal=ϵS(h)+ϵT(h)
理想联合误差(ideal joint error),

ϵ
S
(
h
,
h

)

ϵ
T
(
h
,
h

)

|\epsilon_{\mathcal{S}}(h,h^*)-\epsilon_{\mathcal{T}}(h,h^*)|
ϵS(h,h)ϵT(h,h)
是分布
S
\mathcal{S}
S

T
\mathcal T
T
之间的差距差异(disparity difference)。

  • 笔者注

    损失函数对称即满足交换律,即
    l
    (
    y
    1
    ,
    y
    2
    )
    =
    l
    (
    y
    2
    ,
    y
    1
    )
    l(y_1,y_2)=l(y_2,y_1)
    l(y1,y2)=l(y2,y1)
    ;损失函数可以看作是两个向量之间的差异,因此式
    (
    14
    )
    (14)
    (14)
    衡量的是两个假设(即模型)预测结果的差异程度。

在领域适应性的研究中,通常假定理想联合误差(即源领域任务与目标领域任务的损失函数之和)是充分小的,否则领域适应本身就是不可行的(即无法训练至损失函数达到低水平,对应参考文献
[
10
]
[10]
[10]
中提出的不可能定理,impossibility theorem),此时式
(
15
)
(15)
(15)
中只需要考察最后一项差距差异的数值。

然而目标数据集标签不可得,于是理想假设
h

h^*
h
是未知的,因此差距差异并不能直接估计,
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度正是用于衡量差距差异的上界:

定义
4
4
4

H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度)

定义
H
Δ
H
=
Δ
{
h

h
=
h
1

h
2
,
h
1
,
h
2

H
}
\mathcal{H}\Delta\mathcal{H}\overset{\Delta}{=}\{h|h=h_1\otimes h_2,h_1,h_2\in\mathcal{H}\}
HΔH=Δ{hh=h1h2,h1,h2H}
为假设空间
H
\mathcal{H}
H
对称差异假设空间(symmetric difference hypothesis space),其中

\otimes
表示异或运算符(XOR),则分布
S
\mathcal S
S

T
\mathcal T
T
之间的
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度可以表示为:

d
H
Δ
H
(
S
,
T
)
=
Δ
sup

h
,
h


H

ϵ
S
(
h
,
h

)

ϵ
T
(
h
,
h

)

d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S,T})\overset\Delta=\sup_{h,h'\in\mathcal{H}}|\epsilon_{\mathcal S}(h,h')-\epsilon_{\mathcal T}(h,h')|
dHΔH(S,T)=Δh,hHsupϵS(h,h)ϵT(h,h)

特别地,对于二分类问题的零一损失函数,即
l
(
y
,
y

)
=
1
(
y

y

)
l(y,y')=\textbf{1}(y\neq y')
l(y,y)=1(y=y)
,有:

d
H
Δ
H
(
S
,
T
)
=
Δ
sup

δ

H
Δ
H

E
S
[
δ
(
x
)

]

E
T
[
δ
(
x
)

]

d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S,T})\overset\Delta=\sup_{\delta\in\mathcal{H\Delta H}}|\mathbb{E}_{\mathcal{S}}[\delta({\bf x})\neq0]-\mathbb{E}_{\mathcal{T}}[\delta({\bf x})\neq0]|
dHΔH(S,T)=ΔδHΔHsupES[δ(x)=0]ET[δ(x)=0]

  • 笔者注


    H
    Δ
    H
    \mathcal{H}\Delta\mathcal{H}
    HΔH
    检验的是两个假设真伪相异的情形(异或运算)。因此第二个式子中
    δ
    (
    x
    )
    \delta({\bf x})
    δ(x)
    的取值只有零一,
    δ
    (
    x
    )

    \delta(x)\neq 0
    δ(x)=0
    表示两个假设相异(即模型预测结果不同),整体就是两个假设差异之间的绝对值(即距离)。

    然后再重新看第一个式子,根据式
    (
    14
    )
    (14)
    (14)
    可知,
    ϵ
    D
    (
    h
    ,
    h

    )
    \epsilon_{\mathcal{D}}(h,h')
    ϵD(h,h)
    衡量的是两个假设(即模型)
    h
    h
    h

    h

    h'
    h
    在分布
    D
    \mathcal{D}
    D
    上预测结果的差异值,而绝对值衡量的是距离,因此合起来就是差距的差距,简称差距差异

可以通过有限数量采样自源领域与目标领域的未标注样本来对
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度进行估计(即使用多组不同的模型对分别在源领域与目标领域上预测结果并计算差距差异),但是具体计算优化非常困难的。通常的做法是训练一个领域辨识器(domain discriminator)
D
D
D
来划分源领域与目标领域的样本(参考文献
[
9
,
45
]
[9,45]
[9,45]
)。我们假定辨识器族(family of the discriminators)丰富到足以包含
H
Δ
H
\mathcal{H\Delta H}
HΔH
,即
H
Δ
H

H
D
\mathcal{H\Delta H}\subset\mathcal{H}_D
HΔHHD
(比如神经网络可用于近似几乎所有的函数),则
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度可以进一步控制在下式的范围内:

sup

D

H
D

E
S
[
D
(
x
)
=
1
]
+
E
T
[
D
(
x
)
=
]

\sup_{D\in \mathcal{H}_D}|\mathbb E_{\mathcal S}[D({\bf x})=1]+\mathbb{E}_{\mathcal T}[D({\bf x})=0]|
DHDsupES[D(x)=1]+ET[D(x)=0]

这种思想衍生出Section 3.2.2中领域对立(domain adversarial)方法。此外,若使用非参数方法对
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度进行估计,比如将
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
用某个函数空间
F
\mathcal F
F
替代,即衍生出Section 3.2.1中的统计匹配(statistics matching)方法。

下面这个定理是关于领域适应性最早的研究之一,它简历了基于
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度的二分类问题的一般上界:

定理
5
5
5
(参考文献
[
10
]
[10]
[10]


H
\mathcal{H}
H
是一个二进制假设空间(binary hypothesis space),若
S
^
\mathcal{\hat S}
S

T
^
\mathcal{\hat T}
T
都是容量为
m
m
m
的样本,则对于任意
δ

(
,
1
)
\delta\in(0,1)
δ(0,1)
,至少有
1

δ
1-\delta
1δ
概率下式成立:

ϵ
T
(
h
)

ϵ
S
(
h
)
+
d
H
Δ
H
(
S
^
,
T
^
)
+
ϵ
i
d
e
a
l
+
4
2
d
log

(
2
m
)
+
log

(
2
/
δ
)
m
(

h

H
)
(16)
\epsilon_{\mathcal{T}}(h)\le\epsilon_{\mathcal{S}}(h)+d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{\hat S,\hat T})+\epsilon_{\rm ideal}+4\sqrt{\frac{2d\log(2m)+\log(2/\delta)}{m}}\quad(\forall h\in\mathcal H)\tag{16}
ϵT(h)ϵS(h)+dHΔH(S,T)+ϵideal+4m2dlog(2m)+log(2/δ)(hH)(16)

**定理
5
5
5
**的缺陷在于只能用于二分类问题,因此参考文献
[
45
]
[45]
[45]
将它推广到了多分类的情形:

定理
6
6
6
(参考文献
[
45
]
[45]
[45]

假设损失函数
l
l
l
对称且服从三角不等式,定义

h
S

=
argmin
h

H
ϵ
S
(
h
)
h
T

=
argmin
h

H
ϵ
T
(
h
)
h_{\mathcal S}^*=\text{argmin}_{h\in\mathcal{H}}\epsilon_{\mathcal{S}}(h)\\ h_{\mathcal T}^*=\text{argmin}_{h\in\mathcal{H}}\epsilon_{\mathcal{T}}(h)
hS=argminhHϵS(h)hT=argminhHϵT(h)

分别表示源领域与目标领域的理想假设,则有:

ϵ
T
(
h
)

ϵ
S
(
h
,
h
S

)
+
d
H
Δ
H
(
S
,
T
)
+
ϵ
(

h

H
)
(17)
\epsilon_{\mathcal{T}}(h)\le\epsilon_{\mathcal{S}}(h,h^*_{\mathcal S})+d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S,T})+\epsilon\quad(\forall h\in\mathcal{H})\tag{17}
ϵT(h)ϵS(h,hS)+dHΔH(S,T)+ϵ(hH)(17)

其中
ϵ
S
(
h
,
h
S

)
\epsilon_{\mathcal{S}}(h,h^*_{\mathcal S})
ϵS(h,hS)
表示源领域风险,
ϵ
\epsilon
ϵ
表示适应能力:

ϵ
=
ϵ
T
(
h
T

)
+
ϵ
S
(
h
T

,
h
S

)
\epsilon=\epsilon_{\mathcal T}(h_{\mathcal T}^*)+\epsilon_{\mathcal S}(h_{\mathcal T}^*,h_{\mathcal S}^*)
ϵ=ϵT(hT)+ϵS(hT,hS)

进一步,若
l
l
l
有界,即

(
y
,
y

)

Y
2
,

M
>
\forall (y,y')\in\mathcal{Y}^2,\exists M>0
(y,y)Y2,M>0
,使得
l
(
y
,
y

)

M
l(y,y')\le M
l(y,y)M
。如定义
l
(
y
,
y

)
=

y

y


q
l(y,y')=|y-y'|^q
l(y,y)=yyq
,若
S
^
\mathcal{\hat S}
S

T
^
\mathcal{\hat T}
T
是容量为
n
n
n

m
m
m
的样本,则至少有
1

δ
1-\delta
1δ
的概率下式成立:

d
H
Δ
H
(
S
,
T
)

d
H
Δ
H
(
S
^
,
T
^
)
+
4
q
(
R
n
,
S
(
H
)
+
R
m
,
T
(
H
)
)
+
3
M
(
log

(
4
/
δ
)
2
n
+
log

(
4
/
δ
)
2
m
)
(18)
d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{S,T})\le d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{\hat S,\hat T})+4q(\mathfrak{R}_{n,\mathcal{S}}(\mathcal{H})+\mathfrak{R}_{m,\mathcal{T}}(\mathcal{H}))+3M\left(\sqrt{\frac{\log(4/\delta)}{2n}}+\sqrt{\frac{\log(4/\delta)}{2m}}\right)\tag{18}
dHΔH(S,T)dHΔH(S,T)+4q(Rn,S(H)+Rm,T(H))+3M(2nlog(4/δ)+2mlog(4/δ))(18)

其中
R
n
,
D
\mathfrak{R}_{n,\mathcal{D}}
Rn,D
表示期望拉德马赫复杂度(Expected Rademacher Complexity,参考文献
[
6
]
[6]
[6]
)。

上述所有的
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度的上界依然太松弛(因为
h
h
h

h

h'
h
是可以任取的,那么取上确界值就会非常大),因此参考文献
[
204
]
[204]
[204]
考虑固定其中一个假设,提出差距矛盾的概念(请与上面的差距差异进行区分,一个是disparity discrepancy,一个是disparity difference):

定义
7
7
7
(差距矛盾)

给定二进制假设空间
H
\mathcal{H}
H
以及一个具体的假设
h

H
h\in\mathcal{H}
hH
,由
h
h
h
导出的差距矛盾定义为:

d
h
,
H
(
S
,
T
)
=
sup

h


H
(
E
T
1
[
h


h
]

E
S
1
[
h


h
]
)
(19)
d_{h,\mathcal{H}}(\mathcal{S,T})=\sup_{h'\in\mathcal{H}}(\mathbb{E}_{\mathcal T}\textbf{1}[h'\neq h]-\mathbb{E}_{\mathcal S}\textbf{1}[h'\neq h])\tag{19}
dh,H(S,T)=hHsup(ET1[h=h]ES1[h=h])(19)

  • 笔者注

    对比**定义
    4
    4
    4
    **中的
    H
    Δ
    H
    \mathcal{H}\Delta\mathcal{H}
    HΔH
    散度,这里其实就是固定了一个
    h
    h
    h
    ,别的也没有什么区别。从这边往下的定义和定理基本不具有实用意义。

此时上确界只在一个假设
h

h'
h
上任取,因而大大缩小了上界范围,且计算上也要更加容易。差距矛盾可以很好的用来衡量分布漂移(distribution shift)的程度。

定理
8
8
8
(参考文献
[
204
]
[204]
[204]


S
^
\mathcal{\hat S}
S

T
^
\mathcal{\hat T}
T
是容量为
n
n
n

m
m
m
的样本,对于任意的
δ
>
\delta>0
δ>0
以及每一个二进制分类器
h

H
h\in\mathcal{H}
hH
,都有至少
1

3
δ
1-3\delta
13δ
的概率下式成立:

ϵ
T
(
h
)

ϵ
S
^
(
S
^
,
T
^
)
+
d
h
,
H
(
S
^
,
T
^
)
+
ϵ
i
d
e
a
l
+
2
R
n
,
S
(
H
)
+
2
R
n
,
S
(
H
Δ
H
)
+
2
log

(
2
/
δ
)
2
n
+
2
R
m
,
T
(
H
Δ
H
)
+
2
log

(
2
/
δ
)
2
m
(20)
\epsilon_{\mathcal{T}}(h)\le\epsilon_{\mathcal{\hat S}}(\mathcal{\hat S,\hat T})+d_{h,\mathcal H}(\mathcal{\hat S,\hat T})+\epsilon_{\rm ideal}+2\mathfrak{R}_{n,\mathcal S}(\mathcal{H})\\+2\mathfrak{R}_{n,\mathcal S}(\mathcal{H\Delta H})+2\sqrt{\frac{\log(2/\delta)}{2n}}+2\mathfrak{R}_{m,\mathcal T}(\mathcal{H\Delta H})+2\sqrt{\frac{\log(2/\delta)}{2m}}\tag{20}
ϵT(h)ϵS(S,T)+dh,H(S,T)+ϵideal+2Rn,S(H)+2Rn,S(HΔH)+22nlog(2/δ)+2Rm,T(HΔH)+22mlog(2/δ)(20)

**定理
8
8
8
**是二分类的情形,可以推广到多分类的情形,在此之前我们先给出新的定义:

定义
9
9
9
(边际差距矛盾)

给定一个得分假设空间(scoring hypothesis space)
F
\mathcal F
F
,令

ρ
f
(
x
,
y
)
=
Δ
1
2
(
f
(
x
,
y
)

max

y


y
f
(
x
,
y

)
)
\rho_f(x,y)\overset\Delta=\frac12(f(x,y)-\max_{y'\neq y}f(x,y'))
ρf(x,y)=Δ21(f(x,y)y=ymaxf(x,y))

表示在样本对
(
x
,
y
)
(x,y)
(x,y)
处的实假设(real hypothesis)
f
f
f
边际(margin),令

h
f
:
x

argmax
y

Y
f
(
x
,
y
)
h_f:x\rightarrow\text{argmax}_{y\in\mathcal Y}f(x,y)
hf:xargmaxyYf(x,y)

表示由
f
f
f
导出的标签函数(labeling function),令

Φ
ρ
(
x
)
=
Δ
{
x

ρ
1

x
ρ

x

ρ
1
x

(21)
\Phi_{\rho}(x)\overset\Delta=\left\{\begin{aligned} &0&&x\ge \rho\\ &1-\frac x\rho&&0\le x\le\rho\\ &1&&x\le0\\ \end{aligned}\right.\tag{21}
Φρ(x)=Δ01ρx1xρ0xρx0(21)

表示边际损失(margin loss),则在分布
D
\mathcal{D}
D
上,
f
f
f

f

f'
f
边际差距(margin disparity)为:

ϵ
D
(
ρ
)
(
f

,
f
)
=
E
(
x
,
y
)

D
[
Φ
ρ
(
ρ
f

(
x
,
h
f
(
x
)
)
)
]
(22)
\epsilon_{\mathcal D}^{(\rho)}(f',f)=\mathbb{E}_{(x,y)\sim\mathcal D}[\Phi_{\rho}(\rho_{f'}(x,h_f(x)))]\tag{22}
ϵD(ρ)(f,f)=E(x,y)D[Φρ(ρf(x,hf(x)))](22)

给定具体的假设
f

F
f\in\mathcal F
fF
,则边际差距矛盾(margin disparity discrepancy)为:

d
f
,
F
(
ρ
)
(
S
,
T
)
=
sup

f


F
[
ϵ
T
(
ρ
)
(
f

,
f
)

ϵ
S
(
ρ
)
(
f

,
f
)
]
(23)
d_{f,\mathcal F}^{(\rho)}(\mathcal{S,T})=\sup_{f'\in\mathcal F}[\epsilon_{\mathcal T}^{(\rho)}(f',f)-\epsilon_{\mathcal S}^{(\rho)}(f',f)]\tag{23}
df,F(ρ)(S,T)=fFsup[ϵT(ρ)(f,f)ϵS(ρ)(f,f)](23)

根据式
(
22
)
(22)
(22)
可知边际差距满足非负性与次可加性(subadditivity),但是并不对称,因此并不能直接将**定理
6
6
6
**用到这里来生成一个新的上界,因此我们有本小节最后一个定理:

定理
10
10
10
(参考文献
[
204
]
[204]
[204]

定义
9
9
9
的假设条件下,对于任意的
δ
>
\delta>0
δ>0
,以及任意的
得分函数

f

F
f\in\mathcal F
fF
,都有至少
1

3
δ
1-3\delta
13δ
的概率下式成立:

ϵ
T
(
h
)

ϵ
S
^
(
ρ
)
(
f
)
+
d
f
,
F
(
ρ
)
(
S
^
,
T
^
)
+
ϵ
i
d
e
a
l
+
2
k
2
ρ
R
n
,
S
(
Π
1
F
)
+
k
ρ
R
n
,
S
(
Π
H
F
)
+
2
log

(
2
/
δ
)
2
n
+
2
R
m
,
T
(
Π
H
F
)
+
2
log

(
2
/
δ
)
2
m
(24)
\epsilon_{\mathcal{T}}(h)\le\epsilon_{\mathcal{\hat S}}^{(\rho)}(f)+d_{f,\mathcal F}^{(\rho)}(\mathcal{\hat S,\hat T})+\epsilon_{\rm ideal}+\frac{2k^2}{\rho}\mathfrak{R}_{n,\mathcal S}(\Pi_1\mathcal{F})\\+\frac k\rho\mathfrak{R}_{n,\mathcal S}(\Pi_{\mathcal H}\mathcal{F})+2\sqrt{\frac{\log(2/\delta)}{2n}}+2\mathfrak{R}_{m,\mathcal T}(\Pi_{\mathcal H}\mathcal{F})+2\sqrt{\frac{\log(2/\delta)}{2m}}\tag{24}
ϵT(h)ϵS(ρ)(f)+df,F(ρ)(S,T)+ϵideal+ρ2k2Rn,S(Π1F)+ρkRn,S(ΠHF)+22nlog(2/δ)+2Rm,T(ΠHF)+22mlog(2/δ)(24)

**定理
10
10
10
**中的边际上界指出一个恰当的边际
ρ
\rho
ρ
可以生成在目标领域上更好的推广结果。定理
8
8
8
定理
10
10
10
共同构成Section 3.2.3中的假设对立
(hypothesis adversarial)方法。

注意不论是
H
Δ
H
\mathcal{H}\Delta\mathcal{H}
HΔH
散度还是差距矛盾,其中的上确界符号
sup

\sup
sup
都只在假设空间
H
\mathcal H
H
较小的时候才有意义,然而在一般的神经网络模型中,假设空间
H
\mathcal H
H
都会非常庞大,此时取上确界就会趋于正无穷而失去意义。但是可以通过在上游任务中进行预训练来缩小假设空间,这就是领域对立假设对立方法所必要的预训练。

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

3.2.1 统计匹配 Statistics Matching

上文中已经介绍了很多关于领域适应性的上界理论结果,问题在于这些理论大多依赖假设导出的(hypothesis-induced)分布距离,在没有训练得到模型之前这些理论结果其实都不是很直观,因此本节主要是介绍一些基于统计的概率结果。注意,参考文献
[
112
,
114
]
[112,114]
[112,114]
中介绍了非常多基于假设导出的分布距离构建的领域适应性算法。

定义
11
11
11
(最大平均差距)

给定两个概率分布
S
,
T
\mathcal{S,T}
S,T
以及可测空间(measurable space)
X
\bf X
X
整体概率指标(integral probability metric,参考文献
[
140
]
[140]
[140]
)定义为:

d
F
(
S
,
T
)
=
Δ
sup

f

F

E
x

S
[
f
(
x
)
]

E
x

T
[
f
(
x
)
]

d_{\mathcal F}(\mathcal{S,T})\overset\Delta=\sup_{f\in\mathcal F}|\mathbb{E}_{{\bf x}\sim \mathcal{S}}[f({\bf x})]-\mathbb{E}_{{\bf x}\sim \mathcal{T}}[f({\bf x})]|
dF(S,T)=ΔfFsupExS[f(x)]ExT[f(x)]

其中
F
\mathcal F
F

X
\bf X
X
上的一类有界函数。参考文献
[
163
]
[163]
[163]
进一步将约束
F
\mathcal{F}
F
核希尔伯特空间(kernel Hilbert space,RKHS)
H
k
\mathcal{H}_k
Hk
中的一个单位球(unit ball)内,即
F
=
{
f

H
k
:

f

H
k

1
}
\mathcal F=\{f\in\mathcal{H}_k:\|f\|_{\mathcal{H}_k}\le1\}
F={fHk:fHk1}
,其中
k
k
k
特征核(characteristic kernel),由此导出最大平均差距(maximum mean discrepancy,MMD,参考文献
[
57
]
[57]
[57]
):

d
M
M
D
2
(
S
,
T
)
=

E
x

S
[
ϕ
(
x
)
]

E
x

T
[
ϕ
(
x
)
]

H
k
2
(25)
d_{\rm MMD}^2(\mathcal{S,T})=\|\mathbb{E}_{{\bf x}\in\mathcal S}[\phi({\bf x})]-\mathbb{E}_{{\bf x}\in\mathcal T}[\phi({\bf x})]\|_{\mathcal H_k}^2\tag{25}
dMMD2(S,T)=ExS[ϕ(x)]ExT[ϕ(x)]Hk2(25)

其中
ϕ
(
x
)
\phi(x)
ϕ(x)
是与核函数
k
k
k
相关的特征映射,满足:

k
(
x
,
x

)
=
<
ϕ
(
x
)
,
ϕ
(
x

)
>
k({\bf x},{\bf x}')=\left<\phi({\bf x}),\phi({\bf x}')\right>
k(x,x)=ϕ(x),ϕ(x)

可以证明,
S
=
T
\mathcal S=\mathcal T
S=T
当前仅当
d
F
(
S
,
T
)
=
d_{\mathcal F}(\mathcal{S,T})=0
dF(S,T)=0

d
M
M
D
2
(
S
,
T
)
=
d^2_{\rm MMD}(\mathcal{S,T})=0
dMMD2(S,T)=0

定理
12
12
12
(参考文献
[
140
]
[140]
[140]

给定与定义
11
11
11
同样的设定,
l
l
l
是一个凸的损失函数,形如
l
(
y
,
y

)
=

y

y


q
l(y,y')=|y-y'|^q
l(y,y)=yyq
,则对于任意
δ
>
\delta>0
δ>0
以及

h

F
\forall h\in\mathcal F
hF
,至少有
1

δ
1-\delta
1δ
的概率有下式成立:

ϵ
T
(
h
)

ϵ
S
(
h
)
+
d
M
M
D
(
S
^
,
T
^
)
+
ϵ
i
d
e
a
l
+
2
n
E
x

S
[
tr
(
K
S
)
]
+
2
m
E
x

T
[
tr
(
K
T
)
]
+
2
log

(
2
/
δ
)
2
n
+
log

(
2
/
δ
)
2
m
(26)
\epsilon_{\mathcal T}(h)\le\epsilon_{\mathcal S}(h)+d_{\rm MMD}(\mathcal{\hat S,\hat T})+\epsilon_{\rm ideal}+\frac2n\mathbb{E}_{{\bf x}\sim\mathcal S}\left[\sqrt{\text{tr}({\bf K}_{\mathcal{S}})}\right]\\+\frac2m\mathbb{E}_{{\bf x}\sim\mathcal T}\left[\sqrt{\text{tr}({\bf K}_{\mathcal{T}})}\right]+2\sqrt{\frac{\log(2/\delta)}{2n}}+\sqrt{\frac{\log(2/\delta)}{2m}}\tag{26}
ϵT(h)ϵS(h)+dMMD(S,T)+ϵideal+n2ExS[tr(KS)]+m2ExT[tr(KT)]+22nlog(2/δ)+2mlog(2/δ)(26)

其中
K
S
{\bf K}_{\mathcal{S}}
KS

K
T
{\bf K}_{\mathcal{T}}
KT
分别表示根据
S
\mathcal{S}
S

T
\mathcal{T}
T
中样本计算得到的
核矩阵
(kernel matrices)。

其实跟上面的差距差异也没有太大区别,只是重新定义新的距离计算方式,以及把假设换成了函数,但是相较而言有如下的优势:

  1. 与假设无关的(hypothesis-free),即无需得到确切的模型来衡量分布距离。
  2. 复杂项(complexity term)与Vapnik-Chervonenkis维度无关。
  3. MMD的无偏估计量可以在线性时间内计算得到。
  4. MMD最小化的这个过程在概率论上有一个非常漂亮的统计匹配解释。

与MMD相关的研究有:参考文献
[
174
,
57
,
58
]
[174,57,58]
[174,57,58]
,比较值得注意的是参考文献
[
57
,
58
]
[57,58]
[57,58]
基于深度适应网络(deep adaptation network,DAN,参考文献
[
112
,
116
]
[112,116]
[112,116]
),提出MMD的变体多核MMD(multi-kernel MMD,MK-MMD),具体如Figure 19左图所示:

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

Figure 19中右图是参考文献
[
114
]
[114]
[114]
提出的联合适应网络(joint adaptation network,JAN)中的联合最大平均差距(joint maximum mean discrepancy,JMMD),这是用于衡量两个联合分布
P
(
X
s
,
Y
s
)
P({\bf X}^s,{\bf Y}^s)
P(Xs,Ys)

P
(
X
t
,
Y
t
)
P({\bf X}^t,{\bf Y}^t)
P(Xt,Yt)
之间的距离,用
{
(
z
i
s
1
,
.
.
.
,
z
i
s

L

)
}
i
=
1
n
\{({\bf z}_i^{s1},...,{\bf z}_i^{s|\mathcal L|})\}_{i=1}^n
{(zis1,...,zisL)}i=1n

{
(
z
i
t
1
,
.
.
.
,
z
i
t

L

)
}
j
=
1
m
\{({\bf z}_i^{t1},...,{\bf z}_i^{t|\mathcal L|})\}_{j=1}^m
{(zit1,...,zitL)}j=1m
分别表示激活与适应层
L
\mathcal{L}
L
,JMMD定义如下:

d
J
M
M
D
2
(
S
^
,
T
^
)
=

E
i

[
n
]

l

L
ϕ
l
(
z
i
s
l
)

E
j

[
m
]

l

L
ϕ
l
(
z
j
t
l
)

H
k
2
(27)
d_{\rm JMMD}^2(\mathcal{\hat S,\hat T})=\|\mathbb{E}_{i\in[n]}\otimes_{l\in\mathcal L}\phi^l({\bf z}_i^{sl})-\mathbb{E}_{j\in[m]}\otimes_{l\in\mathcal L}\phi^l({\bf z}_j^{tl})\|_{\mathcal H_k}^2\tag{27}
dJMMD2(S,T)=Ei[n]lLϕl(zisl)Ej[m]lLϕl(zjtl)Hk2(27)

其中
ϕ
l
\phi^l
ϕl
是关于核函数
k
l
k^l
kl
和网络层
l
l
l
的特征映射,

\otimes
表示外积。

常用于MMD中的核函数是高斯核:

k
(
x
1
,
x
2
)
=
exp

(


x
1

x
2

2
2
σ
2
)
k({\bf x}_1,{\bf x}_2)=\exp\left(\frac{-\|{\bf x}_1-{\bf x}_2\|^2}{2\sigma^2}\right)
k(x1,x2)=exp(2σ2x1x22)

通过泰勒展开可以将MMD表示为各阶统计动量(all orders of statistic moments)距离的加权和,基于这样的想法,参考文献
[
166
,
200
]
[166,200]
[166,200]
对MMD做了一些近似的变体。

MMD的缺陷在它估计两个领域之间的距离时,无法将数据分布的几何信息考察进来,对该缺陷改进的研究包括参考文献
[
34
,
36
,
29
]
[34,36,29]
[34,36,29]

最后记录一些其他相关研究:

3.2.2 领域对立学习 Domain Adversarial Learning

3.2.3 假设对立学习 Hypothesis Adversarial Learning

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

3.2.4 领域翻译 Domain Translation

3.2.5 半监督学习 Semi-Supervised Learning

3.2.6 注释 Remarks

总结一下本小节所有方法的性能:

方法 适应性能 数据功效 模态延展性 任务延展性 理论保证
统计匹配
领域对立学习
假设对立学习
领域翻译
半监督学习

字段说明:

4 评估 Evaluation

4.1 数据集 Datasets

通用语言理解评估(general language understanding evaluation,GLUE,参考文献
[
183
]
[183]
[183]
)是目前自然语言处理领域中最又名的基准,下表例举了一系列GLUE的数据集,包括九个句子或句子对级别的语言理解任务:

语料集 训练数据量 测试数据量 评估指标 任务类型 领域

CoLA
\text{CoLA}
CoLA

8.5
k
8.5\rm k
8.5k

1
k
1\rm k
1k
马修斯相关系数 可接受性 混合

SST-2
\text{SST-2}
SST-2

67
k
67\rm k
67k

1.8
k
1.8\rm k
1.8k
精确度 情感分析 影评

MRPC
\text{MRPC}
MRPC

3.7
k
3.7\rm k
3.7k

1.7
k
1.7\rm k
1.7k
精确度/
F1-score
\text{F1-score}
F1-score
短语 新闻

STS-B
\text{STS-B}
STS-B

7
k
7\rm k
7k

1.4
k
1.4\rm k
1.4k
皮尔逊相关系数 句子相似性 混合

QQP
\text{QQP}
QQP

364
k
364\rm k
364k

391
k
391\rm k
391k
精确度/
F1-score
\text{F1-score}
F1-score
短语 社交问答

MNLI
\text{MNLI}
MNLI

393
k
393\rm k
393k

20
k
20\rm k
20k
(非)匹配精确度 自然语言推断 混合

QNLI
\text{QNLI}
QNLI

105
k
105\rm k
105k

5.4
k
5.4\rm k
5.4k
精确度 问答/自然语言推断 维基百科

RTE
\text{RTE}
RTE

2.5
k
2.5\rm k
2.5k

3
k
3\rm k
3k
精确度 自然语言推断 新闻与维基百科

WNLI
\text{WNLI}
WNLI

634
634
634

146
146
146
精确度 共指/自然语言推断 科幻书

但是目前仍未形成类似GLUE用于计算机视觉的基准,这里只是例举一些图像处理领域的常用的数据集:

数据集 训练数据量 测试数据量 类别数 评估指标 领域

Food-101
\text{Food-101}
Food-101
(参考文献
[
88
]
[88]
[88]

75750
75750
75750

25250
25250
25250

101
101
101

top-1
\text{top-1}
top-1
混合

CIFAR-10
\text{CIFAR-10}
CIFAR-10
(参考文献
[
88
]
[88]
[88]

50000
50000
50000

10000
10000
10000

10
10
10

top-1
\text{top-1}
top-1
混合

cIFAR-100
\text{cIFAR-100}
cIFAR-100
(参考文献
[
88
]
[88]
[88]

50000
50000
50000

10000
10000
10000

100
100
100

top-1
\text{top-1}
top-1
混合

SUN397
\text{SUN397}
SUN397
(参考文献
[
88
]
[88]
[88]

19850
19850
19850

19850
19850
19850

397
397
397

top-1
\text{top-1}
top-1
混合

Stanford Cars
\text{Stanford Cars}
Stanford Cars
(参考文献
[
88
]
[88]
[88]

8144
8144
8144

8041
8041
8041

196
196
196

top-1
\text{top-1}
top-1
混合

FGVC Aircraft
\text{FGVC Aircraft}
FGVC Aircraft
(参考文献
[
88
]
[88]
[88]

6667
6667
6667

3333
3333
3333

100
100
100

mean per-class
\text{mean per-class}
mean per-class
混合

Describable Textures(DTD)
\text{Describable Textures(DTD)}
Describable Textures(DTD)
(参考文献
[
88
]
[88]
[88]

3760
3760
3760

1880
1880
1880

47
47
47

top-1
\text{top-1}
top-1
混合

Oxford-III Pets
\text{Oxford-III Pets}
Oxford-III Pets
(参考文献
[
88
]
[88]
[88]

3680
3680
3680

3369
3369
3369

37
37
37

mean per-class
\text{mean per-class}
mean per-class
混合

Caltech-101
\text{Caltech-101}
Caltech-101
(参考文献
[
88
]
[88]
[88]

3060
3060
3060

6084
6084
6084

102
102
102

mean per-class
\text{mean per-class}
mean per-class
混合

Oxford 102 flowers
\text{Oxford 102 flowers}
Oxford 102 flowers

2040
2040
2040

6149
6149
6149

102
102
102

top-1
\text{top-1}
top-1
混合

ImageNet-R
\text{ImageNet-R}
ImageNet-R
(参考文献
[
69
]
[69]
[69]


-

30
k
30\rm k
30k

200
200
200

top-1
\text{top-1}
top-1
混合

ImageNet-Sketch
\text{ImageNet-Sketch}
ImageNet-Sketch
(参考文献
[
84
]
[84]
[84]


-

50
k
50\rm k
50k

1000
1000
1000

top-1
\text{top-1}
top-1
草稿

DomainNet-c
\text{DomainNet-c}
DomainNet-c
(参考文献
[
128
]
[128]
[128]

33525
33525
33525

14604
14604
14604

365
365
365

top-1
\text{top-1}
top-1
剪贴画

DomainNet-p
\text{DomainNet-p}
DomainNet-p
(参考文献
[
128
]
[128]
[128]

50416
50416
50416

21850
21850
21850

365
365
365

top-1
\text{top-1}
top-1
油画

DomainNet-r
\text{DomainNet-r}
DomainNet-r
(参考文献
[
128
]
[128]
[128]

120906
120906
120906

52041
52041
52041

365
365
365

top-1
\text{top-1}
top-1
混合

DomainNet-s
\text{DomainNet-s}
DomainNet-s
(参考文献
[
128
]
[128]
[128]

48212
48212
48212

20916
20916
20916

365
365
365

top-1
\text{top-1}
top-1
草稿

4.2 开源包 Library

4.3 基准 Benchmark

本节主要是对Section 4.1中提到的若干大规模数据集上的预训练和适应的典型方法的基准进行的展示,部分基准结果是通过TLlib实现得到的。

4.3.1 预训练 Pre-Training

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

4.3.2 任务适应性 Task Adaptation

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

4.3.3 领域适应性 Domain Adaptation

【论文阅读】2022年最新迁移学习综述笔注(Transferability in Deep Learning: A Survey)

5 结论 Conclusion

In this paper, we investigate how to acquire and apply transferability in the whole lifecycle of deep learning. In the pre-training section, we focus on how to improve the transferability of the pre-trained models by designing architecture, pre-training task, and training strategy. In the task adaptation section, we discuss how to better preserve and utilize the transferable knowledge to improve the performance of target tasks. In the domain adaptation section, we illustrate how to bridge the domain gap to increase the transferability for real applications. This survey connects many isolated areas with their relation to transferability and provides a unified perspective to explore transferability in deep learning. We expect this study will attract the community’s attention to the fundamental role of transferability in deep learning.

参考文献

[001] Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits of large scale pre-training. In ICLR, 2022.
[002] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. In ACL, 2021. 
[003] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech recognition in english and mandarin. In ICML, 2016. 
[004] Martin Arjovsky, L´eon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019. 
[005] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium in generative adversarial nets (GANs). In ICML, 2017. 
[006] Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. In JMLR, 2002. 
[007] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: Pretrained language model for scientific text. In EMNLP, 2019. 
[008] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning from different domains. Machine Learning, 79, page 151–175, 2010a. 
[009] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for domain adaptation. In NeurIPS, 2006. 
[010] Shai Ben-David, Tyler Lu, Teresa Luu, and David Pal. Impossibility theorems for domain adaptation. In AISTATS, pages 129–136, 2010b. 
[011] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In ICML workshop, 2012. 
[012] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep networks. In NeurIPS, 2007. 
[013] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspectives. TPAMI, 35(8):1798–1828, 2013. 
[014] Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep learning for ai. Communications of the ACM, 64(7):58–65, 2021. 
[015] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. Domain separation networks. In NeurIPS, 2016. 
[016] Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-level domain adaptation with generative adversarial networks. In CVPR, 2017. 
[017] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, and Vincent Vanhoucke. Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In ICRA, 2018. 
[018] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In NeurIPS, 2020. 
[019] Pau Panareda Busto and Juergen Gall. Open set domain adaptation. In ICCV, 2017. 
[020] Rich Caruana. Multitask learning. Technical report, 1997. 
[021] Olivier Chapelle, Bernhard Sch¨olkopf, and Alexander Zien. Semi-Supervised Learning (Adaptive Computation and Machine Learning). The MIT Press, 2006. ISBN 0262033585. 
[022] Minmin Chen, Zhixiang Xu, Kilian Q. Weinberger, and Fei Sha. Marginalized denoising autoencoders for domain adaptation. In ICML, 2012. 
[023] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In ICML, 2020. 
[024] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look at few-shot classification. In ICLR, 2019a. 
[025] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR, 2021. 
[026] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision transformers. arXiv preprint arXiv:2104.02057, 2021a. 
[027] Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin Wang. Catastrophic forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning. In NeurIPS, 2019b. 
[028] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin Wang. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In ICML, 2019c. 
[029] Xinyang Chen, Sinan Wang, Jianmin Wang, and Mingsheng Long. Representation subspace distance for domain adaptation regression. In ICML, 2021b. 
[030] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Domain adaptive faster R-CNN for object detection in the wild. In CVPR, 2018. 
[031] Kyunghyun Cho, Bart van Merri¨enboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In EMNLP, 2014. 
[032] Alexandra Chronopoulou, Christos Baziotis, and Alexandros Potamianos. An embarrassingly simple approach for transfer learning from pretrained language models. In NAACL, 2019. 
[033] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk, and Veselin Stoyanov. XNLI: evaluating cross-lingual sentence representations. In EMNLP, 2018. 
[034] Nicolas Courty, R´emi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution optimal transportation for domain adaptation. In NeurIPS, 2017. 
[035] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale finegrained categorization and domain-specific transfer learning. In CVPR, pages 4109–4118, 2018. 
[036] Bharath Bhushan Damodaran, Benjamin Kellenberger, R´emi Flamary, Devis Tuia, and Nicolas Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation. In ECCV, 2018. 
[037] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. TPAMI, page 1–20, 2021. 
[038] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A largescale hierarchical image database. In CVPR, 2009. 
[039] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL, 2019. 
[040] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning by context prediction. In ICCV, 2015. 
[041] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, 2014. 
[042] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR, 2021. 
[043] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML, 2017. 
[044] Geoffrey French, Michal Mackiewicz, and Mark H. Fisher. Self-ensembling for domain adaptation. In ICLR, 2018. 
[045] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, 2015. 
[046] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Fran¸cois Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. JMLR, 17(59):1–35, 2016. 
[047] Victor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In ICLR, 2018. 
[048] Yixiao Ge, Dapeng Chen, and Hongsheng Li. Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification. In ICLR, 2020. 
[049] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In ICLR, 2019. 
[050] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 
[051] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment classification: A deep learning approach. In ICML, 2011. 
[052] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised domain adaptation. In CVPR, 2012. 
[053] Boqing Gong, Kristen Grauman, and Fei Sha. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In ICML, 2013. 
[054] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In NeurIPS, 2014. 
[055] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. 2015. 
[056] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and Bernhard Sch¨olkopf. Recurrent independent mechanisms. In ICLR, 2021. 
[057] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Sch¨olkopf, and Alexander Smola. A kernel two-sample test. JMLR, 13(25):723–773, 2012a. 
[058] Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji Fukumizu, and Bharath K Sriperumbudur. Optimal kernel choice for large-scale two-sample tests. In NeurIPS, 2012b. 
[059] Jean-Bastien Grill, Florian Strub, Florent Altch´e, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a new approach to self-supervised learning. In NeurIPS, 2020. 
[060] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In ICLR, 2021. 
[061] Demi Guo, Alexander Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning. In ACL, 2021. 
[062] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and Rogerio Feris. Spottune: transfer learning through adaptive fine-tuning. In CVPR, 2019. 
[063] Suchin Gururangan, Ana Marasovi´c, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In ACL, 2020. 
[064] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016. 
[065] Kaiming He, Georgia Gkioxari, Piotr Doll´ar, and Ross Girshick. Mask r-cnn. In ICCV, 2017. 
[066] Kaiming He, Ross Girshick, and Piotr Doll´ar. Rethinking imagenet pre-training. In ICCV, 2019. 
[067] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In CVPR, 2020. 
[068] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll´ar, and Ross Girshick. Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377, 2021. 
[069] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of out-ofdistribution generalization. ICCV, 2021. 
[070] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation and maximization. In ICLR, 2019. 
[071] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell. Fcns in the wild: Pixel-level adversarial and constraint-based adaptation. 2016. 
[072] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In ICML, 2018. 
[073] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP. In ICML, 2019. 
[074] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In ACL, 2018. 
[075] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S. Pande, and Jure Leskovec. Pre-training graph neural networks. In ICLR, 2020. 
[076] Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Sch¨olkopf, and Alex Smola. Correcting sample selection bias by unlabeled data. In NeurIPS, 2007. 
[077] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015. 
[078] Yunhun Jang, Hankook Lee, Sung Ju Hwang, and Jinwoo Shin. Learning what and where to transfer. In ICML, 2019. 
[079] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. SMART: robust and efficient fine-tuning for pre-trained natural language models through principled regularized optimization. In ACL, 2020. 
[080] Junguang Jiang, Yifei Ji, Ximei Wang, Yufeng Liu, Jianmin Wang, and Mingsheng Long. Regressive domain adaptation for unsupervised keypoint detection. In CVPR, 2021. 
[081] Junguang Jiang, Baixu Chen, Jianmin Wang, and Mingsheng Long. Decoupled adaptation for cross-domain object detection. In ICLR, 2022. 
[082] Ying Jin, Ximei Wang, Mingsheng Long, and Jianmin Wang. Minimum class confusion for versatile domain adaptation. In ECCV, 2020. 
[083] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. SpanBERT: Improving pre-training by representing and predicting spans. In TACL, 2020. 
[084] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation network for unsupervised domain adaptation. In CVPR, 2019. 
[085] Taekyung Kim, Minki Jeong, Seunghyeon Kim, Seokeon Choi, and Changick Kim. Diversify and match: A domain adaptive representation learning paradigm for object detection. In CVPR, 2019. 
[086] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka GrabskaBarwinska, et al. Overcoming catastrophic forgetting in neural networks. PNAS, 114 (13):3521–3526, 2017. 
[087] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual representation learning. In ECCV, 2020. 
[088] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In CVPR, 2019. 
[089] Zhi Kou, Kaichao You, Mingsheng Long, and Jianmin Wang. Stochastic normalization. In NeurIPS, 2020. 
[090] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In NeurIPS, 2012. 
[091] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. In NeurIPS, 2019. 
[092] Guillaume Lample, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised machine translation using monolingual corpora only. In ICLR, 2017. 
[093] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of language representations. In ICLR, 2020. 
[094] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553): 436–444, 2015. 
[095] Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced wasserstein discrepancy for unsupervised domain adaptation. In CVPR, 2019. 
[096] Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. Mixout: Effective regularization to finetune large-scale pretrained language models. In ICLR, 2020a. 
[097] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240, 2020b. 
[098] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-toSequence Pre-training for Natural Language Generation, Translation, and Comprehension. In ACL, 2020. 
[099] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension of objective landscapes. In ICLR, 2018. 
[100] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In ACL, 2021. 
[101] Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Zeyu Chen, and Jun Huan. Delta: Deep learning transfer using feature map with attention for convolutional networks. In ICLR, 2019. 
[102] Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization for practical domain adaptation. In ICLR Workshop, 2017. 
[103] Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 40(12):2935–2947, 2018. 
[104] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In ICML, 2020. 
[105] Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-training for domain adaptation. In NeurIPS, 2021a. 
[106] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. In NeurIPS, 2016. 
[107] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing, 2021b. 
[108] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks for natural language understanding. In ACL, 2019a. 
[109] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019b. 
[110] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. 2019c. 
[111] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S. Yu. Transfer feature learning with joint distribution adaptation. In ICCV, 2013. 
[112] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable features with deep adaptation networks. In ICML, 2015. 
[113] Mingsheng Long, Jianmin Wang, and Michael I. Jordan. Unsupervised domain adaptation with residual transfer networks. In NeurIPS, 2016. 
[114] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint adaptation networks. In ICML, 2017. 
[115] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Conditional adversarial domain adaptation. In NeurIPS, 2018. 
[116] Mingsheng Long, Yue Cao, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Transferable representation learning with deep adaptation networks. TPAMI, 41(12):3071–3085, 2019. 
[117] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through l 0 regularization. In ICLR, 2018. 
[118] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly supervised pretraining. In ECCV, 2018. 
[119] Arun Mallya and Svetlana Lazebnik. Piggyback: Adding multiple tasks to a single, fixed network by learning to mask. In ECCV, 2018. 
[120] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and algorithms. In COLT, 2009. 
[121] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In ICML, 2017. 
[122] Jiquan Ngiam, Daiyi Peng, Vijay Vasudevan, Simon Kornblith, Quoc V Le, and Ruoming Pang. Domain adaptive transfer learning with specialist models. arXiv preprint arXiv:1811.07056, 2018. 
[123] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. Leep: A new measure to evaluate transferability of learned representations. In ICML, 2020. 
[124] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. NeurIPS, 2019. 
[125] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. TKDE, pages 1345–1359, 2010. 
[126] Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain adaptation via transfer component analysis. TNNLS, pages 199–210, 2011. 
[127] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS, 2019. 
[128] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for multi-source domain adaptation. In ICCV, 2019. 
[129] Jonas Peters, Peter B¨uhlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction: identification and confidence intervals. Journal of the Royal Statistical Society. Series B (Statistical Methodology), pages 947–1012, 2016. 
[130] Jonas Peters, Dominik Janzing, and Bernhard Sch¨olkopf. Elements of causal inference: foundations and learning algorithms. The MIT Press, 2017. 
[131] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In NAACL, 2018. 
[132] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual bert? In ACL, 2019. 
[133] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence. Dataset shift in machine learning. The MIT Press, 2009. 
[134] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by generative pre-training. Technical report, OpenAI, 2018. 
[135] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In ICML, 2021. 
[136] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR, 21(140):1–67, 2020. 
[137] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse? towards understanding the effectiveness of maml. In ICLR, 2020. 
[138] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understanding transfer learning for medical imaging. In NeurIPS, 2019. 
[139] S-A Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple visual domains with residual adapters. In NeurIPS, 2017. 
[140] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Youn`es Bennani. A survey on domain adaptation theory: learning bounds and theoretical guarantees, 2020. 
[141] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NeurIPS, 2015. 
[142] Michael T. Rosenstein. To transfer or not to transfer. In NeurIPS, 2005. 
[143] Evgenia. Rusak, Steffen Schneider, Peter Gehler, Oliver Bringmann, Wieland Brendel, and Matthias Bethge. Adapting imagenet-scale models to complex distribution shifts with self-learning. arXiv preprint arXiv:2104.12928, 2021. 
[144] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211– 252, 2015. 
[145] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. In ICLR, 2019. 
[146] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier discrepancy for unsupervised domain adaptation. In CVPR, 2018. 
[147] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate Saenko. Strong-weak distribution alignment for adaptive object detection. In CVPR, 2019. 
[148] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially robust imagenet models transfer better? In NeurIPS, 2020. 
[149] Swami Sankaranarayanan, Yogesh Balaji, Carlos D. Castillo, and Rama Chellappa. Generate to adapt: Aligning domains using generative adversarial networks. In CVPR, 2018. 
[150] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-learning with memory-augmented neural networks. In ICML, 2016. 
[151] Timo Schick and Hinrich Sch¨utze. Exploiting cloze questions for few-shot text classification and natural language inference. In EACL, 2020. 
[152] J¨urgen Schmidhuber. Evolutionary principles in self-referential learning. PhD thesis, Technische Universit¨at M¨unchen, 1987. 
[153] Bernhard Sch¨olkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On causal and anticausal learning. In ICML, 2012. 
[154] Bernhard Sch¨olkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634, 2021. 
[155] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin ˇZ´ıdek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein structure prediction using potentials from deep learning. Nature, 577 (7792):706–710, 2020. 
[156] Pierre Sermanet, David Eigen, Xiang Zhang, Micha¨el Mathieu, Rob Fergus, and Yann LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229, 2013. 
[157] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and Russell Webb. Learning from simulated and unsupervised images through adversarial training. In CVPR, 2017. 
[158] Rui Shu, Hung H. Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain adaptation. In ICLR, 2018. 
[159] Yang Shu, Zhangjie Cao, Jinghan Gao, Jianmin Wang, and Mingsheng Long. Omni-training for data-efficient deep learning. arXiv preprint arXiv:2110.07510, 2021a. 
[160] Yang Shu, Zhi Kou, Zhangjie Cao, Jianmin Wang, and Mingsheng Long. Zoo-tuning: Adaptive transfer from a zoo of models. In ICML, 2021b. 
[161] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. 
[162] Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In NeurIPS, 2017. 
[163] Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Sch¨olkopf, and Gert R. G. Lanckriet. Hilbert space embeddings and metrics on probability measures. JMLR, 2010. 
[164] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert M¨uller. Covariate shift adaptation by importance weighted cross validation. JMLR, 8(35):985–1005, 2007. 
[165] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Buenau, and Motoaki Kawanabe. Direct importance estimation with model selection and its application to covariate shift adaptation. In NeurIPS, 2008. 
[166] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In ECCV, 2016. 
[167] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot learning. In CVPR, 2019a. 
[168] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, and Hua Wu. Ernie: Enhanced representation through knowledge integration. arXiv preprint arXiv:1904.09223, 2019b. 
[169] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation. In ICLR, 2017. 
[170] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 1998. 
[171] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV, 2020. 
[172] Lisa Torrey and Jude Shavlik. Transfer learning. 2010. 
[173] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker. Learning to adapt structured output space for semantic segmentation. In CVPR, 2018. 
[174] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance. 2014. 
[175] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across domains and tasks. In ICCV, pages 4068–4076, 2015. 
[176] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In CVPR, 2017. 
[177] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, �Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 
[178] Petar Veliˇckovi´c, William Fedus, William L Hamilton, Pietro Li`o, Yoshua Bengio, and R Devon Hjelm. Deep graph infomax. In ICLR, 2019. 
[179] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008. 
[180] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. In NeurIPS, 2016. 
[181] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Micha¨el Mathieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575 (7782):350–354, 2019. 
[182] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Perez. Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In CVPR, 2019. 
[183] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In ICLR, 2019a. 
[184] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by penalizing local predictive power. In NeurIPS, 2019b. 
[185] Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Transferable normalization: Towards improving transferability of deep neural networks. In NeurIPS, 2019c. 
[186] Ximei Wang, Jinghan Gao, Mingsheng Long, and Jianmin Wang. Self-tuning for dataefficient deep learning. In ICML, 2021. 
[187] Zirui Wang, Zihang Dai, Barnab´as P´oczos, and Jaime G. Carbonell. Characterizing and avoiding negative transfer. In CVPR, 2019d. 
[188] Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In ICLR, 2022. 
[189] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer gan to bridge domain gap for person re-identification. In CVPR, 2018. 
[190] Ross Wightman. Pytorch image models. https://github.com/rwightman/ pytorch-image-models, 2019. 
[191] Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018. 
[192] Zhirong Wu, Yuanjun Xiong, X Yu Stella, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination. In CVPR, 2018. 
[193] Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei Huang. Raise a child in large language model: Towards effective and generalizable fine-tuning. In EMNLP, 2021. 
[194] I Zeki Yalniz, Herv´e J´egou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019. 
[195] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS, 2019. 
[196] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured metalearning. In ICML, 2019. 
[197] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? In NeurIPS, 2014. 
[198] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-trained models for transfer learning. In ICML, 2021. 
[199] Amir Roshan Zamir, Alexander Sax, William B. Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy: Disentangling task transfer learning. In CVPR, 2018. 
[200] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschl¨ager, and Susanne Saminger-Platz. Central moment discrepancy (cmd) for domain-invariant representation learning. In ICLR, 2017. 
[201] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. In ICLR, 2017. 
[202] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan. Theoretically principled trade-off between robustness and accuracy. In ICML, 2019a. 
[203] Jeffrey O. Zhang, Alexander Sax, Amir Zamir, Leonidas J. Guibas, and Jitendra Malik. Side-tuning: Network adaptation via additive side networks. 2019b. 
[204] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm for domain adaptation. In ICML, 2019c. 
[205] Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. In NeurIPS, 2018. 
[206] Nanxuan Zhao, Zhirong Wu, Rynson W. H. Lau, and Stephen Lin. What makes instance discrimination good for transfer learning? In ICLR, 2021. 
[207] Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. When does pretraining help? assessing self-supervised learning for law and the casehold dataset. In ICAIL, 2021. 
[208] Jincheng Zhong, Ximei Wang, Zhi Kou, Jianmin Wang, and Mingsheng Long. Bi-tuning of pre-trained representations. arXiv preprint arXiv:2011.06182, 2020. 
[209] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks. In ICCV, 2017. 
[210] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In ICCV, 2015. 
[211] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2021. 
[212] Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong Wang. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In ECCV, 2018. 

发表回复