高中数学几何是非常重要的一个部分,几乎涵盖了所有的题型,选择题、填空题、大题当中都有它们的身影,所以同学们对其也一定要重视。除了课上的基础知识外,还要掌握一定的技巧,那么高中数学几何题解题技巧都有哪些呢?
高中数学几何题解题技巧
1、学会用参数方程来解题
掌握一定的参数方程的知识和极坐标方程的知识,参数方程可在x与y关系复杂的情况下比较好的表示方程,简化后续运算,而极坐标方程在一些抛物线方程中,可以简化运算过程。
2、理解几何图形的差异
由于高中生在学习立体几何初期,逻辑思维能力和空间想象能力比较差,导致学习过程比较吃力。在几何图形的学习过程中,要学会将几何图形语言转化成文字语言,这也是学习立体几何的关键所在。在立体几何中有时候学生看到的图形并不能真实的反应图形的结构,学生要接受和理解立体几何和真实图形中存在的差异。
3、了解各种题型所考察的内容
选择题主要以椭圆、双曲线为考查对象,填空题以抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,一般不给出图形。
以考查的能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现。
4、重视基础的计算
解析几何其实最大的难点在于它的计算量,解析几何其实思路比较简单,就是繁杂的计算量,压垮了许多学生,这也从侧面反映出来了许多同学基础是不过关的,计算是基础中的基础了,同学们要去重视。
5、注意隐含条件
在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形直角梯形等等,或给出的线段长度,经计算满足勾股定理。
高中数学几何中包含着许多的图形,我们要了解其中每个图形的特点以及其隐含的性质,这样在做题过程中才能更加得心应手,在考试中也可以得到一个高分。