发布时间:2023-04-30 文章分类:WEB开发, 电脑百科 投稿人:王小丽 字号: 默认 | | 超大 打印

vue项目中使用trackingjs人脸识别

  • 前言
  • 一、下载trackingjs库
  • 二、trackingjs引用
  • 三、检测过程
    • 1.初始化设置、创建实例
    • 2.检测视频中人脸
    • 3.判断上传
    • 4.上传人脸
    • 5.关闭摄像头
  • 四、源代码
  • 五、效果图
  • 总结

前言

新需求要做一个前端人脸登录,最终选用了trackingjs库实现识别的前端部分,在前端进行识数据采集,并把信息保存后发送给后端进行处理。

一、下载trackingjs库

进入官网下载之后,将文件保存在assets文件夹下
vue项目中使用trackingjs人脸识别

二、trackingjs引用

  import tracking from '@/assets/tracking/build/tracking-min.js';
  import '@/assets/tracking/build/data/face-min.js';

三、检测过程

1.初始化设置、创建实例

        // 获取实例
	    this.video = this.mediaStreamTrack = document.getElementById('video');
        this.screenshotCanvas = document.getElementById('screenshotCanvas');
        let canvas = document.getElementById('canvas');
        let context = canvas.getContext('2d');
        // 固定写法,使用人脸包
        let tracker = new window.tracking.ObjectTracker('face');
        tracker.setInitialScale(4);
        tracker.setStepSize(2);
        tracker.setEdgesDensity(0.1);
        // 摄像头初始化
        this.trackerTask = window.tracking.track('#video', tracker, {
          camera: true
        });
        tracker.on('track', function(event) {
        });

2.检测视频中人脸

        tracker.on('track', function(event) {
          // 检测出人脸 绘画人脸位置
          context.clearRect(0, 0, canvas.width, canvas.height);
          event.data.forEach(function(rect) {
            context.strokeStyle = '#0764B7';
            context.strokeRect(rect.x, rect.y, rect.width, rect.height);
          });
		  // 上传人脸信息
        });

3.判断上传

          // event.data.length长度为多少代表检测几张人脸
          // 人脸数为1且无锁才可以上传
          if(_this.uploadLock && event.data.length){
          //上传图片
              _this.screenshotAndUpload();
          }

4.上传人脸

      screenshotAndUpload() {
        // 上锁避免重复发送请求
        this.uploadLock = false;
        // 绘制当前帧图片转换为base64格式
        let canvas = this.screenshotCanvas;
        let video = this.video;
        let ctx = canvas.getContext('2d');
        ctx.clearRect(0, 0, canvas.width, canvas.height);
        ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
        let base64Img = canvas.toDataURL('image/jpeg');
        // 打印出 base64Img
        console.log('base64Img:',base64Img)
        // 请求接口成功以后打开锁
        // this.uploadLock = true;
      },

5.关闭摄像头

      destroyed(){
        if(!this.mediaStreamTrack){
          return
        }
        this.mediaStreamTrack.srcObject.getTracks()[0].stop();
        this.trackerTask.stop()
      }

四、源代码

直接粘贴就可以,代码如下:

<template>
  <div>
    <div class="video-box">
      <video id="video" width="320" height="240" preload autoplay loop muted></video>
      <canvas id="canvas" width="320" height="240"></canvas>
    </div>
    <canvas id="screenshotCanvas" width="320" height="240"></canvas>
    <div class="switch-button">
      <el-row>
        <el-button type="primary" @click="destroyed">关闭摄像头</el-button>
        <el-button type="primary" @click="init">开始识别</el-button>
      </el-row>
    </div>
  </div>
</template>
<script>
  import tracking from '@/assets/tracking/build/tracking-min.js';
  import '@/assets/tracking/build/data/face-min.js';
  export default {
    data() {
      return {
        trackerTask: null,
        mediaStreamTrack: null,
        video: null,
        screenshotCanvas: null,
        uploadLock: true // 上传锁
      }
    },
    mounted() {
      this.init();
    },
    methods: {
      // 初始化设置
      init() {
        this.video = this.mediaStreamTrack = document.getElementById('video');
        this.screenshotCanvas = document.getElementById('screenshotCanvas');
        let canvas = document.getElementById('canvas');
        let context = canvas.getContext('2d');
        // 固定写法
        let tracker = new window.tracking.ObjectTracker('face');
        tracker.setInitialScale(4);
        tracker.setStepSize(2);
        tracker.setEdgesDensity(0.1);
        //摄像头初始化
        this.trackerTask = window.tracking.track('#video', tracker, {
          camera: true
        });
        let _this = this;
        tracker.on('track', function(event) {
          // 检测出人脸 绘画人脸位置
          context.clearRect(0, 0, canvas.width, canvas.height);
          event.data.forEach(function(rect) {
            context.strokeStyle = '#0764B7';
            context.strokeRect(rect.x, rect.y, rect.width, rect.height);
          });
          // event.data.length长度为多少代表检测几张人脸
          if(_this.uploadLock && event.data.length){
          //上传图片
              _this.screenshotAndUpload();
          }
        });
      },
      // 上传图片
      screenshotAndUpload() {
        // 上锁避免重复发送请求
        this.uploadLock = false;
        // 绘制当前帧图片转换为base64格式
        let canvas = this.screenshotCanvas;
        let video = this.video;
        let ctx = canvas.getContext('2d');
        ctx.clearRect(0, 0, canvas.width, canvas.height);
        ctx.drawImage(video, 0, 0, canvas.width, canvas.height);
        let base64Img = canvas.toDataURL('image/jpeg');
        // 打印出 base64Img
        console.log('base64Img:',base64Img)
        // 请求接口成功以后打开锁
        // this.uploadLock = true;
      },
      //关闭摄像头
      destroyed(){
        if(!this.mediaStreamTrack){
          return
        }
        this.mediaStreamTrack.srcObject.getTracks()[0].stop();
        this.trackerTask.stop()
      }
    }
  }
</script>
<style scoped>
  /* 绘图canvas 不需显示隐藏即可 */
  #screenshotCanvas{
    display: none;
  }
  .video-box{
    position: relative;
    margin-left: 30px;
    width: 320px;
    height: 240px;
  }
  .switch-button{
    margin-top: 30px;
    margin-left: 30px;
  }
  video,canvas{
    position: absolute;
    top: 0;
    left: 0;
	border: #000000 5px solid;
  }
</style>

五、效果图

vue项目中使用trackingjs人脸识别

总结

新需求要做一个前端人脸登录,最终选用了trackingjs库实现识别的前端部分,在前端进行识数据采集,并把信息保存后发送给后端进行处理。