前言

  • 在上篇文章《人工智能大模型之ChatGPT原理解析》中分享了一些大模型之ChatGPT的核心原理后,收到大量读者的反馈,诸如:在了解了核心原理后想进一步了解未来的发展趋势(比如生成式人工智能和元宇宙能擦出什么样的火花?),大模型如何优化现有技术(如:如何提高图像文档识别准确率等)…
  • 近期有幸参加了中国图像图形学学会和合合信息共同举办的CSIG企业行活动,对活动中的干货自己花了一些精力进行系统性研究与整理,在此与大家共享
  • 此次活动邀请了图像描述与视觉问答、图文公式识别、自然语言处理的自注意力模型、视觉创造的机器学习等领域的优秀学者前来分享交流;旨在面向文档图像分析与识别的前沿研究领域为学者们、从业者们提供交流与研讨的机会,促进产学研交流与合作
  • 本文站在大模型之ChatGPT的实际应用以及促进未来发展方向与大家共享,希望得到更多读者的反馈

学完本篇博文,你将学到哪些内容

全景一张图

人工智能大模型多场景应用原理解析

元宇宙&生成式人工智能思考

生成式人工智能是什么?

一类能够生成新的、原创的内容的人工智能模型。这些模型通常基于深度学习技术,能够通过学习输入的数据,生成新的数据或者文本。这些模型已经在许多领域取得了成功,如图像生成、自然语言处理等。在元宇宙中,生成式人工智能可以用来创造新的虚拟物品、环境、角色等,丰富元宇宙的内容。

元宇宙是什么?

元宇宙是一个虚拟的、完全互联的世界,包括人工智能、虚拟现实、增强现实等技术的融合,使人们可以在其中进行各种活动。元宇宙是一个复杂的系统,需要大量的技术和资源来实现。

生成式人工智能和元宇宙的关系

生成式人工智能可以为元宇宙提供新的内容和创意,使其更加生动和有趣。同时,元宇宙也可以为生成式人工智能提供更多的数据和场景,以便其能够更好地学习和生成内容。

如何促进元宇宙实现?

要促进元宇宙的实现,需要采取多种措施,包括技术研发、投资支持、政策引导等。其中,生成式人工智能可以为元宇宙提供独特的价值,可以通过以下方式促进元宇宙的实现:

  1. 提供丰富的内容和创意,使元宇宙更加生动和有趣;
  2. 优化元宇宙的交互和用户体验,提高用户参与度;
  3. 促进元宇宙的商业化和价值创造,推动元宇宙向着可持续发展的方向发展;
  4. 加强元宇宙的安全和隐私保护,保障用户权益。

未来战略技术

深刻变革

数学原理

学习一个概率分布 p(x) 是指学习如何生成符合该分布的样本。一旦学习完成,我们可以通过采样来从该分布中生成新的样本,也可以通过呈现函数 f(x) 将样本呈现出来
人工智能大模型多场景应用原理解析

科学挑战

现有技术

技术趋势

图像文档复杂结构建模

背景

基于部首建模

基于SEM表格

基于文档预训练模型

文档图像处理中底层视觉技术

下面文档图像处理技术是合合信息公司重点技术,合合信息图像算法研发总监郭丰俊博士针对目前底层视觉技术在处理形变、模糊、阴影遮盖、背景杂乱的文档时遇到的典型问题,就公司技术团队在智能图像处理技术模块、融合技术典型应用、图像安全领域等领域的研究成果进行了分享;合合信息在智能文字识别、图像处理、自然语言处理(NLP)、知识图谱、大数据挖掘等核心技术领域深耕十余年,拥有百余项自主知识产权的发明专利

智能文档扫描

人工智能大模型多场景应用原理解析

ROI提取

形变矫正

图像恢复-阴影去除
人工智能大模型多场景应用原理解析

质量增强

图像篡改检测

PS篡改检测

人工智能大模型多场景应用原理解析

传统基于Exif检测PS

网络结构

人工智能大模型多场景应用原理解析

PS-篡改检测体验

人工智能大模型多场景应用原理解析

更多功能体验地址

人工智能大模型多场景应用原理解析

总结

发表回复