文章目录

  • 概述
  • 代码实现
    • image_trian.py
    • def create_model_and_diffusion()
    • def create_gaussian_diffusion()
    • SpacedDiffusion类
    • GaussianDiffusion类 ⭐ LOOK HERE ⭐
  • 边角料
    • noise scheduling

概述

DM beat GANs作者改进了DDPM模型,提出了三个改进点,目的是提高在生成图像上的对数似然

第一个改进点方差改成了可学习的,预测方差线性加权的权重

第二个改进点将噪声方案的线性变化变成了非线性变换

第三个改进点将loss做了改进,Lhybrid = Lsimple+λLvlb(MSE loss+KL loss),采用了loss平滑的方法,基于loss算出重要性来采样t(不再是均匀采样t),Lvlb不直接采用Lt,而是Lt除以归一化的值pt(∑pt=1),pt是Lt平方的期望值的平方根,基于Lt最近的十个值,更少的采样步骤实现同样的效果

Lvlb,变分下界,L0加到Lt可拆解为3部分
L0 x1预测x0
0到t-1之间的,后验分布,神经网络预测的KL散度
Lt,由于一开始是一个先验的标准分布,不含参的,不参与神经网络优化
(pytorch进阶之路)IDDPM之diffusion实现

论文地址:
https://arxiv.org/abs/2102.09672
https://arxiv.org/pdf/2102.09672.pdf

项目地址:
https://github.com/openai/improved-diffusion

那么εθ的NN模型输入xt和t,输出的量和xt是保持一致的,

这里的NN模型用的是attention-based Unet,但不是本篇的重点,可以看另一篇博客

代码实现

项目地址:
https://github.com/openai/improved-diffusion

image_trian.py

image_train.py编写了大体的训练结构框架,只有短短的几行代码

def main()中
首先create_argparser

	args = create_argparser().parse_args()
    dist_util.setup_dist()
    logger.configure()
    logger.log("creating model and diffusion...")

create_argparser函数中定义了字典,数据目录,学习率一些默认的超参数,dict会更新,来源于model_and_diffusion_defaults函数,其返回也是一个字典,但是其键值对和模型和扩散相关的参数,创建argumentParser,遍历字典添加到argparser中,这样省的我们一个个去写手写add_argument,是一个很好的学习的简洁写法

def create_argparser():
    defaults = dict(
        data_dir="",
        schedule_sampler="uniform",
        lr=1e-4,
        weight_decay=0.0,
        lr_anneal_steps=0,
        batch_size=1,
        microbatch=-1,  # -1 disables microbatches
        ema_rate="0.9999",  # comma-separated list of EMA values
        log_interval=10,
        save_interval=10000,
        resume_checkpoint="",
        use_fp16=False,
        fp16_scale_growth=1e-3,
    )
    defaults.update(model_and_diffusion_defaults())
    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)
    return parser
def add_dict_to_argparser(parser, default_dict):
    for k, v in default_dict.items():
        v_type = type(v)
        if v is None:
            v_type = str
        elif isinstance(v, bool):
            v_type = str2bool
        parser.add_argument(f"--{k}", default=v, type=v_type)

回到main函数,create_model_and_diffusion,得到unet model和diffusion框架,传入的参数是args_to_dict函数的**,args很大超参数,key只需要model和diffusion的部分

	model, diffusion = create_model_and_diffusion(
        **args_to_dict(args, model_and_diffusion_defaults().keys())
    )
    model.to(dist_util.dev())
    schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)

schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
返回的是一个采样器,可以是均匀采样,uniform,或者是基于loss重要性采样,二阶动量平滑loss,loss-second-moment

	logger.log("creating data loader...")
    data = load_data(
        data_dir=args.data_dir,
        batch_size=args.batch_size,
        image_size=args.image_size,
        class_cond=args.class_cond,
    )

load_data函数, 返回的图片,list image files recursively,递归的找到所有图片文件,对data dir下的都遍历一遍,class_cond,类别判断,找到图片的每个类别,假设文件名的下划线的第一部分就是类别,用split做分割,将class排序设置索引,最终模型输出的还是索引

def load_data(
    *, data_dir, batch_size, image_size, class_cond=False, deterministic=False
):
    """
    For a dataset, create a generator over (images, kwargs) pairs.
    Each images is an NCHW float tensor, and the kwargs dict contains zero or
    more keys, each of which map to a batched Tensor of their own.
    The kwargs dict can be used for class labels, in which case the key is "y"
    and the values are integer tensors of class labels.
    :param data_dir: a dataset directory.
    :param batch_size: the batch size of each returned pair.
    :param image_size: the size to which images are resized.
    :param class_cond: if True, include a "y" key in returned dicts for class
                       label. If classes are not available and this is true, an
                       exception will be raised.
    :param deterministic: if True, yield results in a deterministic order.
    """
    if not data_dir:
        raise ValueError("unspecified data directory")
    all_files = _list_image_files_recursively(data_dir)
    classes = None
    if class_cond:
        # Assume classes are the first part of the filename,
        # before an underscore.
        class_names = [bf.basename(path).split("_")[0] for path in all_files]
        sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))}
        classes = [sorted_classes[x] for x in class_names]
    dataset = ImageDataset(
        image_size,
        all_files,
        classes=classes,
        shard=MPI.COMM_WORLD.Get_rank(),
        num_shards=MPI.COMM_WORLD.Get_size(),
    )
    if deterministic:
        loader = DataLoader(
            dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True
        )
    else:
        loader = DataLoader(
            dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True
        )
    while True:
        yield from loader

ImageDataset类自定义了dataset,getitem传入index获取每张图片,进行处理获取单张的训练样本,图像处理进行resize,转换RGB格式,归一化到-1到1之间的浮点型

class ImageDataset(Dataset):
    def __init__(self, resolution, image_paths, classes=None, shard=0, num_shards=1):
        super().__init__()
        self.resolution = resolution
        self.local_images = image_paths[shard:][::num_shards]
        self.local_classes = None if classes is None else classes[shard:][::num_shards]
    def __len__(self):
        return len(self.local_images)
    def __getitem__(self, idx):
        path = self.local_images[idx]
        with bf.BlobFile(path, "rb") as f:
            pil_image = Image.open(f)
            pil_image.load()
        # We are not on a new enough PIL to support the `reducing_gap`
        # argument, which uses BOX downsampling at powers of two first.
        # Thus, we do it by hand to improve downsample quality.
        while min(*pil_image.size) >= 2 * self.resolution:
            pil_image = pil_image.resize(
                tuple(x // 2 for x in pil_image.size), resample=Image.BOX
            )
        scale = self.resolution / min(*pil_image.size)
        pil_image = pil_image.resize(
            tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
        )
        arr = np.array(pil_image.convert("RGB"))
        crop_y = (arr.shape[0] - self.resolution) // 2
        crop_x = (arr.shape[1] - self.resolution) // 2
        arr = arr[crop_y : crop_y + self.resolution, crop_x : crop_x + self.resolution]
        arr = arr.astype(np.float32) / 127.5 - 1
        out_dict = {}
        if self.local_classes is not None:
            out_dict["y"] = np.array(self.local_classes[idx], dtype=np.int64)
        return np.transpose(arr, [2, 0, 1]), out_dict

main的最后代码的部分是实例化TrainLoop类,调用其run_loop函数,就可以开始训练了

	logger.log("training...")
    TrainLoop(
        model=model,
        diffusion=diffusion,
        data=data,
        batch_size=args.batch_size,
        microbatch=args.microbatch,
        lr=args.lr,
        ema_rate=args.ema_rate,
        log_interval=args.log_interval,
        save_interval=args.save_interval,
        resume_checkpoint=args.resume_checkpoint,
        use_fp16=args.use_fp16,
        fp16_scale_growth=args.fp16_scale_growth,
        schedule_sampler=schedule_sampler,
        weight_decay=args.weight_decay,
        lr_anneal_steps=args.lr_anneal_steps,
    ).run_loop()

总体来说:
整个训练框架分为三步,第一步超参数汇总生成argparser,第二步create model and diffusion,第三步trainloop开始训练

这是总体的训练框架,下面看看细节create model and diffusion部分,下面只介绍diffusion的实现,model部分自己随意替换成任意模型网络

def create_model_and_diffusion()

只是一个很顶层的封装函数,没有具体的实现

def create_model_and_diffusion(
    image_size,
    class_cond,
    learn_sigma,
    sigma_small,
    num_channels,
    num_res_blocks,
    num_heads,
    num_heads_upsample,
    attention_resolutions,
    dropout,
    diffusion_steps,
    noise_schedule,
    timestep_respacing,
    use_kl,
    predict_xstart,
    rescale_timesteps,
    rescale_learned_sigmas,
    use_checkpoint,
    use_scale_shift_norm,
):
    model = create_model(
        image_size,
        num_channels,
        num_res_blocks,
        learn_sigma=learn_sigma,
        class_cond=class_cond,
        use_checkpoint=use_checkpoint,
        attention_resolutions=attention_resolutions,
        num_heads=num_heads,
        num_heads_upsample=num_heads_upsample,
        use_scale_shift_norm=use_scale_shift_norm,
        dropout=dropout,
    )
    diffusion = create_gaussian_diffusion(
        steps=diffusion_steps,
        learn_sigma=learn_sigma,
        sigma_small=sigma_small,
        noise_schedule=noise_schedule,
        use_kl=use_kl,
        predict_xstart=predict_xstart,
        rescale_timesteps=rescale_timesteps,
        rescale_learned_sigmas=rescale_learned_sigmas,
        timestep_respacing=timestep_respacing,
    )
    return model, diffusion

这篇博客主要讲diffusion实现部分,那么我们可以看到diffusion由create_gaussian_diffusion()函数创建

	diffusion = create_gaussian_diffusion(
        steps=diffusion_steps,
        learn_sigma=learn_sigma,
        sigma_small=sigma_small,
        noise_schedule=noise_schedule,
        use_kl=use_kl,
        predict_xstart=predict_xstart,
        rescale_timesteps=rescale_timesteps,
        rescale_learned_sigmas=rescale_learned_sigmas,
        timestep_respacing=timestep_respacing,
    )

def create_gaussian_diffusion()

create_gaussian_diffusion生成一个扩散过程的框架,这是一个diffusion的顶层封装函数,

def create_gaussian_diffusion(
    *,
    steps=1000,
    learn_sigma=False,
    sigma_small=False,
    noise_schedule="linear",
    use_kl=False,
    predict_xstart=False,
    rescale_timesteps=False,
    rescale_learned_sigmas=False,
    timestep_respacing="",
):
    betas = gd.get_named_beta_schedule(noise_schedule, steps)
    if use_kl:
        loss_type = gd.LossType.RESCALED_KL
    elif rescale_learned_sigmas:
        loss_type = gd.LossType.RESCALED_MSE
    else:
        loss_type = gd.LossType.MSE
    if not timestep_respacing:
        timestep_respacing = [steps]
    return SpacedDiffusion(
        use_timesteps=space_timesteps(steps, timestep_respacing),
        betas=betas,
        model_mean_type=(
            gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
        ),
        model_var_type=(
            (
                gd.ModelVarType.FIXED_LARGE
                if not sigma_small
                else gd.ModelVarType.FIXED_SMALL
            )
            if not learn_sigma
            else gd.ModelVarType.LEARNED_RANGE
        ),
        loss_type=loss_type,
        rescale_timesteps=rescale_timesteps,
    )

第一步确定加噪的方案,get_named_beta_schedule,生成一个加噪的方案
获得了beta schedule

  betas = gd.get_named_beta_schedule(noise_schedule, steps)

然后确定loss type,取决于从命令行传来的超参数是什么,use_kl的话使用rescaled_kl,rescale_learned_sigmas超参数使用rescaled_mse,不设置超参数启动普通的mse

	if use_kl:
        loss_type = gd.LossType.RESCALED_KL
    elif rescale_learned_sigmas:
        loss_type = gd.LossType.RESCALED_MSE
    else:
        loss_type = gd.LossType.MSE

create_gaussian_diffusion类最后return了一个实例化
调用了SpacedDiffusion的实例化

return SpacedDiffusion(  # 下略

SpacedDiffusion就是Diffusion的实现类嘛?还是一个顶层的封装函数,封装的是一种可以跳过基本扩散过程中的步骤的扩散过程

SpacedDiffusion类

SpacedDiffusion类就是创建扩散模型的框架

timestep_respacing,对timestep做改进

将参数都传入 SpaceDiffusion类中进行实例化,所以这个代码的深度很深

下面看看SpacedDiffusion,这个类继承自GaussianDiffusion类

类的注释:
A diffusion process which can skip steps in a base diffusion process
一种可以跳过基本扩散过程的步骤(skip steps)的扩散过程。

扩散过程类,init函数定义了加噪方案的β,timestep哪些时刻要保留,numstep加噪次数

p_mean_variance函数,p就是神经网络所预测的分布,故p_mean_variance就是神经网络预测的均值和方差,这里调用的是父类的方法super().

training_loss函数,根据传入的超参数不同得到不同目标函数的公式,最简单的就是MSE loss,我们也可以加上kl loss联合起来作为目标函数

_wrap_model函数,对timestep进行后处理,比如对timestep进行scale,对timestep进行一定的优化

class SpacedDiffusion(GaussianDiffusion):
    """
    A diffusion process which can skip steps in a base diffusion process.
    :param use_timesteps: a collection (sequence or set) of timesteps from the
                          original diffusion process to retain.
    :param kwargs: the kwargs to create the base diffusion process.
    """
    def __init__(self, use_timesteps, **kwargs):
        self.use_timesteps = set(use_timesteps)
        self.timestep_map = []
        self.original_num_steps = len(kwargs["betas"])
        base_diffusion = GaussianDiffusion(**kwargs)  # pylint: disable=missing-kwoa
        last_alpha_cumprod = 1.0
        new_betas = []
        for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
            if i in self.use_timesteps:
                new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
                last_alpha_cumprod = alpha_cumprod
                self.timestep_map.append(i)
        kwargs["betas"] = np.array(new_betas)
        super().__init__(**kwargs)
    def p_mean_variance(
        self, model, *args, **kwargs
    ):  # pylint: disable=signature-differs
        return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
    def training_losses(
        self, model, *args, **kwargs
    ):  # pylint: disable=signature-differs
        return super().training_losses(self._wrap_model(model), *args, **kwargs)
    def _wrap_model(self, model):
        if isinstance(model, _WrappedModel):
            return model
        return _WrappedModel(
            model, self.timestep_map, self.rescale_timesteps, self.original_num_steps
        )
    def _scale_timesteps(self, t):
        # Scaling is done by the wrapped model.
        return t
 class _WrappedModel:
    def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
        self.model = model
        self.timestep_map = timestep_map
        self.rescale_timesteps = rescale_timesteps
        self.original_num_steps = original_num_steps
    def __call__(self, x, ts, **kwargs):
        map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
        new_ts = map_tensor[ts]
        if self.rescale_timesteps:
            new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
        return self.model(x, new_ts, **kwargs)

GaussianDiffusion类 ⭐ LOOK HERE ⭐

下面来看SpacedDiffusion的父类GaussianDiffusion类

位置:improved_diffusion/gaussian_diffusion.py

先看注释:Utilities for training and sampling diffusion models.
训练和抽样扩散模型的实用程序,找了半天,原来这里才是真正的实现类

init函数

model_mean_type,知道这个模型要预测什么,预测的是方差还是噪声还是x0,
model_var_type,方差是固定还是可学习的,还是预测学习线性加权的权重

		self.model_mean_type = model_mean_type
		self.model_var_type = model_var_type

loss_type,是预测mse还是加kl

        self.loss_type = loss_type

rescale-timesteps,对时间进行scale,使得timestep永远缩放到在0到1000之间

        self.rescale_timesteps = rescale_timesteps

传入betas,论文中有提到一个扩散的超参数,1维的向量,在0到1之间

        betas = np.array(betas, dtype=np.float64)
   		self.betas = betas
        assert len(betas.shape) == 1, "betas must be 1-D"
        assert (betas > 0).all() and (betas <= 1).all()
		self.num_timesteps = int(betas.shape[0])

后面得到一些变量α=1-β,α-bar(α连乘),α-bar-prev(αt-1-bar),α-bar-next(αt+1-bar),根号下的等等α,根号下1-αt-bar,sqrt-recip,倒数根号下alpha等等,用于论文中计算的公式

        alphas = 1.0 - betas
        self.alphas_cumprod = np.cumprod(alphas, axis=0)
        self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
        self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
        assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
        self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
        self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
        self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)

接下来计算扩散过程中后验分布的真实的方差和均值,方差是一个常数可以直接计算,均值和xt有关,但是均值的两个系数是可以先确定的

      # calculations for posterior q(x_{t-1} | x_t, x_0)
        self.posterior_variance = (
            betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        )
        # log calculation clipped because the posterior variance is 0 at the
        # beginning of the diffusion chain.
        self.posterior_log_variance_clipped = np.log(
            np.append(self.posterior_variance[1], self.posterior_variance[1:])
        )
        self.posterior_mean_coef1 = (
            betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        )
        self.posterior_mean_coef2 = (
            (1.0 - self.alphas_cumprod_prev)
            * np.sqrt(alphas)
            / (1.0 - self.alphas_cumprod)
        )

(pytorch进阶之路)IDDPM之diffusion实现

接着看看类中的其他一些函数,q_mean_variance,基于下面的公式8生成均值和方差,中间的是均值,后面是标准差
(pytorch进阶之路)IDDPM之diffusion实现

    def q_mean_variance(self, x_start, t):
        """
        Get the distribution q(x_t | x_0).
        :param x_start: the [N x C x ...] tensor of noiseless inputs.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
        """
        mean = (
            _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        )
        variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
        log_variance = _extract_into_tensor(
            self.log_one_minus_alphas_cumprod, t, x_start.shape
        )
        return mean, variance, log_variance

q_sample函数,对上面q-mean-variance进行采样,给定x0和t的情况下采样出xt,这个过程就是重参数的过程

    def q_sample(self, x_start, t, noise=None):
        """
        Diffuse the data for a given number of diffusion steps.
        In other words, sample from q(x_t | x_0).
        :param x_start: the initial data batch.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :param noise: if specified, the split-out normal noise.
        :return: A noisy version of x_start.
        """
        if noise is None:
            noise = th.randn_like(x_start)
        assert noise.shape == x_start.shape
        return (
            _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
            + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
            * noise
        )

q-posterior-mean-variance,基于x0,xt和t计算出公式9和公式10真实分布的均值和方差
(pytorch进阶之路)IDDPM之diffusion实现

 def q_posterior_mean_variance(self, x_start, x_t, t):
        """
        Compute the mean and variance of the diffusion posterior:
            q(x_{t-1} | x_t, x_0)
        """
        assert x_start.shape == x_t.shape
        posterior_mean = (
            _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = _extract_into_tensor(
            self.posterior_log_variance_clipped, t, x_t.shape
        )
        assert (
            posterior_mean.shape[0]
            == posterior_variance.shape[0]
            == posterior_log_variance_clipped.shape[0]
            == x_start.shape[0]
        )
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

p_mean_variance,p分布是神经网络的分布,去建模拟合的分布,得到前一时刻(逆扩散过程)的均值和方差,也包括x0的预测

 def p_mean_variance(
        self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
    ):
        """
        Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
        the initial x, x_0.
        :param model: the model, which takes a signal and a batch of timesteps
                      as input.
        :param x: the [N x C x ...] tensor at time t.
        :param t: a 1-D Tensor of timesteps.
        :param clip_denoised: if True, clip the denoised signal into [-1, 1].
        :param denoised_fn: if not None, a function which applies to the
            x_start prediction before it is used to sample. Applies before
            clip_denoised.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :return: a dict with the following keys:
                 - 'mean': the model mean output.
                 - 'variance': the model variance output.
                 - 'log_variance': the log of 'variance'.
                 - 'pred_xstart': the prediction for x_0.
        """
        if model_kwargs is None:
            model_kwargs = {}
        B, C = x.shape[:2]
        assert t.shape == (B,)
        model_output = model(x, self._scale_timesteps(t), **model_kwargs)
        if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
            assert model_output.shape == (B, C * 2, *x.shape[2:])
            model_output, model_var_values = th.split(model_output, C, dim=1)
            if self.model_var_type == ModelVarType.LEARNED:
                model_log_variance = model_var_values
                model_variance = th.exp(model_log_variance)
            else:
                min_log = _extract_into_tensor(
                    self.posterior_log_variance_clipped, t, x.shape
                )
                max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
                # The model_var_values is [-1, 1] for [min_var, max_var].
                frac = (model_var_values + 1) / 2
                model_log_variance = frac * max_log + (1 - frac) * min_log
                model_variance = th.exp(model_log_variance)
        else:
            model_variance, model_log_variance = {
                # for fixedlarge, we set the initial (log-)variance like so
                # to get a better decoder log likelihood.
                ModelVarType.FIXED_LARGE: (
                    np.append(self.posterior_variance[1], self.betas[1:]),
                    np.log(np.append(self.posterior_variance[1], self.betas[1:])),
                ),
                ModelVarType.FIXED_SMALL: (
                    self.posterior_variance,
                    self.posterior_log_variance_clipped,
                ),
            }[self.model_var_type]
            model_variance = _extract_into_tensor(model_variance, t, x.shape)
            model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
        def process_xstart(x):
            if denoised_fn is not None:
                x = denoised_fn(x)
            if clip_denoised:
                return x.clamp(-1, 1)
            return x
        if self.model_mean_type == ModelMeanType.PREVIOUS_X:
            pred_xstart = process_xstart(
                self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
            )
            model_mean = model_output
        elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
            if self.model_mean_type == ModelMeanType.START_X:
                pred_xstart = process_xstart(model_output)
            else:
                pred_xstart = process_xstart(
                    self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
                )
            model_mean, _, _ = self.q_posterior_mean_variance(
                x_start=pred_xstart, x_t=x, t=t
            )
        else:
            raise NotImplementedError(self.model_mean_type)
        assert (
            model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
        )
        return {
            "mean": model_mean,
            "variance": model_variance,
            "log_variance": model_log_variance,
            "pred_xstart": pred_xstart,
        }

_predict_xstart_from_eps,辅助函数,从预测处的噪声预测x0,对应公式12 (pytorch进阶之路)IDDPM之diffusion实现
给定xt,t和x0到xt所加的噪声反推出x0

    def _predict_xstart_from_eps(self, x_t, t, eps):
        assert x_t.shape == eps.shape
        return (
            _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
        )

_predict_xstart_from_xprev,从xt-1中预测出x0
(pytorch进阶之路)IDDPM之diffusion实现
基于公式10,xt-1就是μ~t,有xt,反推出x0

    def _predict_xstart_from_xprev(self, x_t, t, xprev):
        assert x_t.shape == xprev.shape
        return (  # (xprev - coef2*x_t) / coef1
            _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
            - _extract_into_tensor(
                self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
            )
            * x_t
        )

_predict_eps_from_xstart,从x0和xt,推导eps,对公式8的反推

(pytorch进阶之路)IDDPM之diffusion实现

 def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
        return (
            _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - pred_xstart
        ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)

p_sample,从xt采样出xt-1,所有的p分布都是模型预测的,其实就是推理的函数

    def p_sample(
        self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
    ):
        """
        Sample x_{t-1} from the model at the given timestep.
        :param model: the model to sample from.
        :param x: the current tensor at x_{t-1}.
        :param t: the value of t, starting at 0 for the first diffusion step.
        :param clip_denoised: if True, clip the x_start prediction to [-1, 1].
        :param denoised_fn: if not None, a function which applies to the
            x_start prediction before it is used to sample.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :return: a dict containing the following keys:
                 - 'sample': a random sample from the model.
                 - 'pred_xstart': a prediction of x_0.
        """
        out = self.p_mean_variance(
            model,
            x,
            t,
            clip_denoised=clip_denoised,
            denoised_fn=denoised_fn,
            model_kwargs=model_kwargs,
        )
        noise = th.randn_like(x)
        nonzero_mask = (
            (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
        )  # no noise when t == 0
        sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
        return {"sample": sample, "pred_xstart": out["pred_xstart"]}

_vb_terms_bpd, 计算最终的kl散度
kl散度包括两项,当t在0到t之间,用模型预测分布计算高斯分布算一个kl散度,另一项是最后一个时刻,L0 loss,使用的是似然函数,负对数似然函数,使用的是累积分布函数的差分拟合离散的高斯分布

   def _vb_terms_bpd(
        self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
    ):
        """
        Get a term for the variational lower-bound.
        The resulting units are bits (rather than nats, as one might expect).
        This allows for comparison to other papers.
        :return: a dict with the following keys:
                 - 'output': a shape [N] tensor of NLLs or KLs.
                 - 'pred_xstart': the x_0 predictions.
        """
        true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
            x_start=x_start, x_t=x_t, t=t
        )
        out = self.p_mean_variance(
            model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
        )
        kl = normal_kl(
            true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
        )
        kl = mean_flat(kl) / np.log(2.0)
        decoder_nll = -discretized_gaussian_log_likelihood(
            x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
        )
        assert decoder_nll.shape == x_start.shape
        decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
        # At the first timestep return the decoder NLL,
        # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
        output = th.where((t == 0), decoder_nll, kl)
        return {"output": output, "pred_xstart": out["pred_xstart"]}

traning-loss,计算一个使用的loss

   def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
        """
        Compute training losses for a single timestep.
        :param model: the model to evaluate loss on.
        :param x_start: the [N x C x ...] tensor of inputs.
        :param t: a batch of timestep indices.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :param noise: if specified, the specific Gaussian noise to try to remove.
        :return: a dict with the key "loss" containing a tensor of shape [N].
                 Some mean or variance settings may also have other keys.
        """
        if model_kwargs is None:
            model_kwargs = {}
        if noise is None:
            noise = th.randn_like(x_start)
        x_t = self.q_sample(x_start, t, noise=noise)
        terms = {}
        if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
            terms["loss"] = self._vb_terms_bpd(
                model=model,
                x_start=x_start,
                x_t=x_t,
                t=t,
                clip_denoised=False,
                model_kwargs=model_kwargs,
            )["output"]
            if self.loss_type == LossType.RESCALED_KL:
                terms["loss"] *= self.num_timesteps
        elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
            model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)
            if self.model_var_type in [
                ModelVarType.LEARNED,
                ModelVarType.LEARNED_RANGE,
            ]:
                B, C = x_t.shape[:2]
                assert model_output.shape == (B, C * 2, *x_t.shape[2:])
                model_output, model_var_values = th.split(model_output, C, dim=1)
                # Learn the variance using the variational bound, but don't let
                # it affect our mean prediction.
                frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
                terms["vb"] = self._vb_terms_bpd(
                    model=lambda *args, r=frozen_out: r,
                    x_start=x_start,
                    x_t=x_t,
                    t=t,
                    clip_denoised=False,
                )["output"]
                if self.loss_type == LossType.RESCALED_MSE:
                    # Divide by 1000 for equivalence with initial implementation.
                    # Without a factor of 1/1000, the VB term hurts the MSE term.
                    terms["vb"] *= self.num_timesteps / 1000.0
            target = {
                ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
                    x_start=x_start, x_t=x_t, t=t
                )[0],
                ModelMeanType.START_X: x_start,
                ModelMeanType.EPSILON: noise,
            }[self.model_mean_type]
            assert model_output.shape == target.shape == x_start.shape
            terms["mse"] = mean_flat((target - model_output) ** 2)
            if "vb" in terms:
                terms["loss"] = terms["mse"] + terms["vb"]
            else:
                terms["loss"] = terms["mse"]
        else:
            raise NotImplementedError(self.loss_type)
        return terms

_extract_into_tensor,辅助函数,从tensor中取出第t时刻

def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.
    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)

边角料

一个很小很小的改动,算是技巧的noise scheduling

noise scheduling

原始的DDPM中使用的是线性的增长的β加噪方案,此处使用了余弦的方案,同时控制上界在0.999

def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
    """
    Get a pre-defined beta schedule for the given name.
    The beta schedule library consists of beta schedules which remain similar
    in the limit of num_diffusion_timesteps.
    Beta schedules may be added, but should not be removed or changed once
    they are committed to maintain backwards compatibility.
    """
    if schedule_name == "linear":
        # Linear schedule from Ho et al, extended to work for any number of
        # diffusion steps.
        scale = 1000 / num_diffusion_timesteps
        beta_start = scale * 0.0001
        beta_end = scale * 0.02
        return np.linspace(
            beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
        )
    elif schedule_name == "cosine":
        return betas_for_alpha_bar(
            num_diffusion_timesteps,
            lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
        )
    else:
        raise NotImplementedError(f"unknown beta schedule: {schedule_name}")

发表回复